98%
921
2 minutes
20
Research on wood phenology has mainly focused on reactivation of the cambium in spring. In this study we investigated if summer drought advances cessation of wood formation and if it has any influence on wood structure in late successional forest trees of the temperate zone. The end of xylogenesis was monitored between August and November in stands of European beech and pedunculate oak in Belgium for two consecutive years, 2017 and 2018, with the latter year having experienced an exceptional summer drought. Wood formation in oak was affected by the drought, with oak trees ceasing cambial activity and wood maturation about 3 weeks earlier in 2018 compared with 2017. Beech ceased wood formation before oak, but its wood phenology did not differ between years. Furthermore, between the 2 years, no significant difference was found in ring width, percentage of mature fibers in the late season, vessel size and density. In 2018, beech did show thinner fiber walls, whereas oak showed thicker walls. In this paper, we showed that summer drought can have an important impact on late season wood phenology xylem development. This will help to better understand forest ecosystems and improve forest models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpaa175 | DOI Listing |
J Agric Food Chem
September 2025
Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.
The -hydroxyphenyl (H) unit is an aromatic structure found in lignin, particularly abundant in compression wood and grass, and is derived from the incorporation of -coumaryl alcohol (-CMA). Although the structural and biosynthetic aspects of lignin have been extensively studied, the polymerization reactivity of H-unit during lignification remains poorly understood. In this study, horseradish peroxidase (HRP)-catalyzed homo- and co-oxidative coupling reactions (initial stage of enzymatic dehydrogenative polymerization) with -CMA and/or coniferyl alcohol (CA) were performed to investigate monolignol consumption, dilignol formation, and their potential involvement in subsequent polymerization.
View Article and Find Full Text PDFFam Pract
August 2025
Division of Primary Care, Palliative Care and Public Health, Leeds Institute of Health Sciences, University of Leeds, Leeds LS2 9LN, United Kingdom.
Background: Kidney function declines with age, increasing risk of harm from raised blood levels of many medicines. Prescribing is often inappropriate for older people with reduced creatinine clearance (CrCl).
Objective: To examine the feasibility and acceptability of providing performance feedback to increase CrCl calculation and coding and reduce potentially inappropriate prescribing.
Zhongguo Zhong Yao Za Zhi
July 2025
Mianyang Key Laboratory of Development and Utilization of Chinese Medicine Resources, Sichuan College of Traditional Chinese Medicine Mianyang 621000, China.
To investigate the effects of phosphorus fertilizer on the morphological traits, active ingredients and rhizosphere soil microbial community of Polygala tenuifolia. The phosphorus fertilizer was calculated in terms of P_2O_5. Five treatments were set up: 0(CK), 17(P1), 34(P2), 51(P3), and 68(P4) kg per Mu(1 Mu≈667 m~2).
View Article and Find Full Text PDFNature
September 2025
Center for Psychiatric Genetics, Endeavor Health Research Institute, Evanston, IL, USA.
Despite genome-wide association studies (GWAS) of late-onset Alzheimer's disease (LOAD) having identified many genetic risk loci, the underlying disease mechanisms remain largely unclear. Determining causal disease variants and their LOAD-relevant cellular phenotypes has been a challenge. Here, using our approach for identifying functional GWAS risk variants showing allele-specific open chromatin, we systematically identified putative causal LOAD-risk variants in human induced pluripotent stem (iPS)-cell-derived neurons, astrocytes and microglia, and linked a PICALM LOAD-risk allele to a microglial-specific role of PICALM in lipid droplet (LD) accumulation.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.
Apical-basal polarity (ABP) establishment and maintenance is necessary for proper brain development, yet how it is controlled is unclear. Galectin-3 (Gal-3) has been previously implicated in ABP of epithelial cells, and, here, we find that it is apically expressed in human embryonic stem cells (hESCs) during neural induction. Gal-3 blockade disrupts ABP and alters the distribution of junctional proteins in hESC-derived neural rosettes and is rescued by addition of recombinant Gal-3.
View Article and Find Full Text PDF