A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Propensity Score Weighting and Trimming Strategies for Reducing Variance and Bias of Treatment Effect Estimates: A Simulation Study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To extend previous simulations on the performance of propensity score (PS) weighting and trimming methods to settings without and with unmeasured confounding, Poisson outcomes, and various strengths of treatment prediction (PS c statistic), we simulated studies with a binary intended treatment T as a function of 4 measured covariates. We mimicked treatment withheld and last-resort treatment by adding 2 "unmeasured" dichotomous factors that directed treatment to change for some patients in both tails of the PS distribution. The number of outcomes Y was simulated as a Poisson function of T and confounders. We estimated the PS as a function of measured covariates and trimmed the tails of the PS distribution using 3 strategies ("Crump," "Stürmer," and "Walker"). After trimming and reestimation, we used alternative PS weights to estimate the treatment effect (rate ratio): inverse probability of treatment weighting, standardized mortality ratio (SMR)-treated, SMR-untreated, the average treatment effect in the overlap population (ATO), matching, and entropy. With no unmeasured confounding, the ATO (123%) and "Crump" trimming (112%) improved relative efficiency compared with untrimmed inverse probability of treatment weighting. With unmeasured confounding, untrimmed estimates were biased irrespective of weighting method, and only Stürmer and Walker trimming consistently reduced bias. In settings where unmeasured confounding (e.g., frailty) may lead physicians to withhold treatment, Stürmer and Walker trimming should be considered before primary analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8327194PMC
http://dx.doi.org/10.1093/aje/kwab041DOI Listing

Publication Analysis

Top Keywords

unmeasured confounding
16
treatment
11
propensity score
8
score weighting
8
weighting trimming
8
settings unmeasured
8
function measured
8
measured covariates
8
tails distribution
8
inverse probability
8

Similar Publications