Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Environmental salinity not only affects the physiological processes such as osmoregulation and hormonal control, but also changes the immune system in fishes. Studies are limited in fish on the roles of the T cell receptor (TCR)-related genes in relation to changes in environmental salinity. A large group of salinity-challenged transcripts was obtained in gills of marbled eel (Anguilla marmorata). Moreover, bioinformatic ways were used to identify the enriched TCR pathway related genes which were significantly different expressed in fresh water (FW), brackish water (BW) and seawater (SW). Meanwhile, the RT-qPCR results were validated and consistent with the RNA-seq results. TCR a, TCR b, CD45, CD28, PI3K, LCK and LAT were up-regulated when the salinity increases in BW and SW, which connected with the related signaling pathways (Ras-MAPK and PKC pathway). CD4 and Zap70 were down-regulated when the salinity increases in BW and SW, which connected with the PLC pathway. The research offers a novel viewpoint to explore the immune pathways including the TCR pathway in fish based on transcriptome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbd.2021.100815 | DOI Listing |