A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Environmental salinity influences the branchial expression of TCR pathway related genes based on transcriptome of a catadromous fish. | LitMetric

Environmental salinity influences the branchial expression of TCR pathway related genes based on transcriptome of a catadromous fish.

Comp Biochem Physiol Part D Genomics Proteomics

College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China. Electronic address:

Published: June 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Environmental salinity not only affects the physiological processes such as osmoregulation and hormonal control, but also changes the immune system in fishes. Studies are limited in fish on the roles of the T cell receptor (TCR)-related genes in relation to changes in environmental salinity. A large group of salinity-challenged transcripts was obtained in gills of marbled eel (Anguilla marmorata). Moreover, bioinformatic ways were used to identify the enriched TCR pathway related genes which were significantly different expressed in fresh water (FW), brackish water (BW) and seawater (SW). Meanwhile, the RT-qPCR results were validated and consistent with the RNA-seq results. TCR a, TCR b, CD45, CD28, PI3K, LCK and LAT were up-regulated when the salinity increases in BW and SW, which connected with the related signaling pathways (Ras-MAPK and PKC pathway). CD4 and Zap70 were down-regulated when the salinity increases in BW and SW, which connected with the PLC pathway. The research offers a novel viewpoint to explore the immune pathways including the TCR pathway in fish based on transcriptome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbd.2021.100815DOI Listing

Publication Analysis

Top Keywords

environmental salinity
12
tcr pathway
12
pathway genes
8
based transcriptome
8
salinity increases
8
increases connected
8
tcr
5
pathway
5
salinity influences
4
influences branchial
4

Similar Publications