98%
921
2 minutes
20
This article explores basic statistical concepts of clinical trial design and diagnostic testing, or how one starts with a question, formulates it into a hypothesis on which a clinical trial is then built, and integrates it with statistics and probability, such as determining the probability of rejecting the null hypothesis when it is actually true (type I error) and the probability of failing to reject the null hypothesis when it is false (type II error). There are a variety of tests for different types of data, and the appropriate test must be chosen for which the sample data meet the assumptions. Correcting type I error in the presence of multiple testing is needed to control the error's inflation. Within diagnostic testing, identifying false-positive and false-negative results is critical to understanding the performance of a test. These are used to determine the sensitivity and specificity of a test along with the test's negative predictive value and positive predictive value. These quantities, specifically sensitivity and specificity, are used to determine the accuracy of a diagnostic test using receiver-operating-characteristic curves. These concepts are briefly introduced to provide a basic understanding of clinical trial design and analysis, with references to allow the reader to explore various concepts at a more detailed level if desired.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8729862 | PMC |
http://dx.doi.org/10.2967/jnumed.120.245654 | DOI Listing |
JMIR Res Protoc
September 2025
Research Unit of General Practice, Department of Public Health, University of Southern Denmark, Odense M, Denmark.
Background: Acute respiratory infections (ARIs) are frequent reasons for medical consultations in general practice and can lead to unnecessary recontacts. Introducing new point-of-care (POC) polymerase chain reaction (PCR) diagnostic equipment may offer an attractive and efficient way of providing a more precise and exact microbial diagnosis. Successful uptake of POC PCR equipment could potentially lead to a reduction in recontacts with benefits for both staff and patients.
View Article and Find Full Text PDFNeurology
October 2025
Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, WA.
Background And Objectives: Neuroimaging findings in immune effector cell-associated neurotoxicity syndrome (ICANS) have not been systematically described. We created the chimeric antigen receptor (CAR) T-cell Neurotoxicity Imaging Virtual Archive Library (CARNIVAL), a centralized imaging database for children and young adults receiving CAR T-cell therapy. Objectives of this study were to (1) characterize neuroimaging findings associated with ICANS and (2) determine whether specific ICANS-related neuroimaging findings are associated with individual neurologic symptoms.
View Article and Find Full Text PDFNeurology
October 2025
Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada.
Background And Objectives: Years before diagnosis of Parkinson disease (PD), dementia with Lewy bodies (DLB), or multiple system atrophy (MSA), mild prodromal manifestations can be detected. Longitudinal follow-up of people with prodromal synucleinopathy, particularly idiopathic/isolated REM sleep behavior disorder (iRBD), enables in-depth clinical phenotyping of early disease, which could facilitate stratification for clinical trials, provide the definition of appropriate end points, or predict phenoconversion more precisely. The aim of this study was to update and expand on previous studies assessing clinical evolution from iRBD to clinically diagnosed disease, up to 14 years before diagnosis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304.
The biophysical properties of single cells are crucial for understanding cellular function and behavior in biology and medicine. However, precise manipulation of cells in 3-D microfluidic environments remains challenging, particularly for heterogeneous populations. Here, we present "Electro-LEV," a unique platform integrating electromagnetic and magnetic levitation principles for dynamic 3-D control of cell position during separation.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Information Technology, Uppsala University, Uppsala, Sweden.
For effective treatment of bacterial infections, it is essential to identify the species causing the infection as early as possible. Current methods typically require hours of overnight culturing of a bacterial sample and a larger quantity of cells to function effectively. This study uses one-hour phase-contrast time-lapses of single-cell bacterial growth collected from microfluidic chip traps, also known as a "mother machine".
View Article and Find Full Text PDF