Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Two decades ago, cancer vaccines were hailed as a prominent breakthrough for the treatment of cancer. However, the vaccines failed to show any improvement in median survival time in various clinical trials, even though they stimulated the immune response and showed exceptional safety profiles. The resistance of cancer cells to the immune response was revealed as a significant hurdle. In this review, I discuss the different types of cancer vaccines and the strategies used to design them. I also highlight how cancer cells develop resistance to the immune response, and how therapies, such as monoclonal antibodies (mAbs) and small interfering (si)RNA/short hairpin (sh)RNA could be used to address some of the shortcomings of cancer vaccine treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.drudis.2021.02.006 | DOI Listing |