A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

NaCl aggregation in water at elevated temperatures and pressures: Comparison of classical force fields. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The properties of water vary dramatically with temperature and density. This can be exploited to control its effectiveness as a solvent. Thus, supercritical water is of keen interest as solvent in many extraction processes. The low solubility of salts in lower density supercritical water has even been suggested as a means of desalination. The high temperatures and pressures required to reach supercritical conditions can present experimental challenges during collection of required physical property and phase equilibria data, especially in salt-containing systems. Molecular simulations have the potential to be a valuable tool for examining the behavior of solvated ions at these high temperatures and pressures. However, the accuracy of classical force fields under these conditions is unclear. We have, therefore, undertaken a parametric study of NaCl in water, comparing several salt and water models at 200 bar-600 bar and 450 K-750 K for a range of salt concentrations. We report a comparison of structural properties including ion aggregation, hydrogen bonding, density, and static dielectric constants. All of the force fields qualitatively reproduce the trends in the liquid phase density. An increase in ion aggregation with decreasing density holds true for all of the force fields. The propensity to aggregate is primarily determined by the salt force field rather than the water force field. This coincides with a decrease in the water static dielectric constant and reduced charge screening. While a decrease in the static dielectric constant with increasing NaCl concentration is consistent across all model combinations, the salt force fields that exhibit more ionic aggregation yield a slightly smaller dielectric decrement.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0030962DOI Listing

Publication Analysis

Top Keywords

force fields
20
temperatures pressures
12
static dielectric
12
water
8
classical force
8
supercritical water
8
high temperatures
8
ion aggregation
8
salt force
8
force field
8

Similar Publications