Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gangliosides are amphiphilic, acidic glycosphingolipids possessing one or more sialic acid residues and several isobaric structural isomers with different abundances and bioactivities. Therefore, the distinction between these isomers is crucial for their proper profiling. Although liquid chromatography-mass spectrometry has been successfully employed for this purpose, the distinction process can still be improved, particularly regarding liquid chromatography. Recently, a reversed-phase liquid chromatography method that could separate disialoganglioside isomers was reported; however, the distinction of trisialoganglioside isomers using reversed-phase liquid chromatography has not been demonstrated. Here, we investigated the practicality of a reversed-phase liquid chromatography with an octadecylsilane column for separating polysialoganglioside isomers and successfully achieved the isomer separation of disialogangliosides and trisialogangliosides for the first time. We also confirmed several crucial factors in the mobile-phase composition, which affect the differential retention and mass spectral response of the isomers. First, an organic modifier, acetonitrile, exhibited superior selectivity against polysialogangliosides over methanol. Second, ammonium bicarbonate was the best ammonium salt additive among those tested, in terms of the separation efficiency and mass spectral response. Third, as the ammonium salt concentration increased, the negative electrospray ionization response was extensively suppressed, and the retention of gangliosides increased.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.202001248DOI Listing

Publication Analysis

Top Keywords

reversed-phase liquid
16
liquid chromatography
16
isomer separation
8
liquid chromatography-mass
8
chromatography-mass spectrometry
8
mass spectral
8
spectral response
8
ammonium salt
8
liquid
6
isomers
6

Similar Publications

Unravelling the polysorbate 20 composition: A fusion of UPLC-MS analysis and stochastic modelling.

Eur J Pharm Biopharm

September 2025

RaDes GmbH, Schnackenburgallee 114, 22525 Hamburg, Germany. Electronic address:

Polysorbate 20 (PS20) is one of the most commonly used non-ionic surfactants in cosmetics, pharmaceuticals and food products. Considered as biocompatible and non-irritating, it is further valued for its solubilising and protein stabilising properties. PS20 is manufactured through a multi-stage reaction of sorbitol with various fatty acids and ethylene oxide, resulting in a complex mixture of components with different molecular weights and polarity.

View Article and Find Full Text PDF

Liquid chromatography has advanced considerably since its introduction in the 1970s, with reversed-phase liquid chromatography (RPLC) becoming the dominant technique for separating non-volatile molecules. A key strategy for optimising separation conditions is the modelling of chromatographic retention from experimental data. Traditionally, this is achieved by fitting model parameters for each solute, resulting in individual solute models (ISMs).

View Article and Find Full Text PDF

Lithobates palmipes is a frog species whose skin secretions contain peptides belonging to the ranatuerin, brevinin, and temporin families. In this study, the peptide ranatuerin-2PMe was isolated and evaluated for its antimicrobial, hemolytic, antiproliferative, and chemotactic activities. Ranatuerin-2PMe (2933.

View Article and Find Full Text PDF

Carboxylic enantiomers are prevalent in living organisms and synthetic samples that exhibit important biological properties. The profiling of carboxylic enantiomers is beneficial for monitoring physiological states and further unraveling the metabolism mechanisms between carboxylic enantiomers and diseases. In this study, pairs of light and heavy isotope reagents, ()-(3-aminopiperidin-1-yl) phenyl-methanone/-()-(3-aminopiperidin-1-yl) phenyl-methanone (APMA/-APMA), were synthesized and applied to tag the enantiomers of carboxylic metabolites and drugs.

View Article and Find Full Text PDF

Impact of biological buffers and chelators on fenton-like reactions in the context of poloxamer188 degradation.

Eur J Pharm Biopharm

September 2025

Coriolis Pharma Research GmbH, Fraunhoferstraße 18 b, Martinsried 82152, Germany.

Fenton-like reagents serve as useful tools to induce oxidative stress in forced degradation studies of surfactants, providing a relevant model due to the possible presence of trace amounts of transition metal ions and peroxides in liquid drug formulations. It is known that catalytic reactivity of transition metal ions heavily depends on the ligands present in the solution and that it differs between buffer systems. Herein, we compare the influence of common buffers and chelating agents on poloxamer188 (P188) degradation by using a fast-gradient reversed phase chromatography with charged aerosol detection (LC-CAD) and automatic sample preparation.

View Article and Find Full Text PDF