Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The effects of polyvinyl alcohol (PVA) on the release behavior of polymer nanoparticles from nanocomposite particles using amino acids were investigated. Rifaximin (RFX) was used as a hydrophobic drug model. RFX-loaded poly(L-lactide-co-glycolide) (PLLGA) nanoparticles were prepared using an antisolvent diffusion method. They were then spray-dried with equal amounts of amino acids to prepare the nanocomposite particles. The mean diameters of nanocomposite particles were 2.86-5.42 μm. The particle size increased as the concentration of PVA aqueous solution increased. The mean diameters of RFX-loaded PLLGA nanoparticles were 150-160 nm; however, the particle size distributions of those prepared using 0.25% (w/v) PVA aqueous solution differed significantly immediately after preparation and after redispersion from nanocomposite particles. The release test results of nanocomposite particles revealed that those prepared using 0.25% and 0.50% (w/v) aqueous PVA solutions rapidly released RFX. In contrast, particles prepared using 2.00 and 4.00% (w/v) PVA aqueous solution showed sustained drug release. The results of drug release tests of nanoparticles redispersed from nanocomposite particles showed that the nanoparticles prepared using 0.50% and 2.00% (w/v) PVA aqueous solution suppressed the initial burst. Therefore, we considered that the results of the drug release behavior of the nanoparticles in these particles reflectsreflect the release behavior of the nanoparticles from the nanocomposite particles. These results indicate that the rate of redispersion from nanocomposite particles to nanoparticles can be controlled by changing the concentration of PVA aqueous solution.

Download full-text PDF

Source
http://dx.doi.org/10.5650/jos.ess20299DOI Listing

Publication Analysis

Top Keywords

nanocomposite particles
36
pva aqueous
20
aqueous solution
20
drug release
16
release behavior
12
w/v pva
12
particles
11
nanocomposite
9
effects polyvinyl
8
polyvinyl alcohol
8

Similar Publications

A free radical polymerization approach was applied to synthesize different carboxymethyl cellulose-grafted poly(acrylamide) hydrogels (Hyd) composited with biochar, magnetic biochar, and magnetic biochar decorated with ZIF-67 to decontaminate methylene blue (MB) from water media. Biochar was obtained from walnut shells (WS) by a pyrolysis method, and magnetic biochar (WS/CoFeO) and biochar-decorated ZIF-67 (WS/CoFeO/ZIF-67) were prepared by chemical co-precipitation and hydrothermal methods, respectively. An increase in the amount of these particles by up to 10 wt% enhanced the removal performance.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).

View Article and Find Full Text PDF

The iron nickel magnesium tetra-oxide (FeNiMgO) nanocomposites (NCs) first reported in this article were synthesized using the sol-gel method. For investigation using powder X-ray diffraction (PXRD), the presence of a cubic structure is confirmed. In Raman spectroscopy, the vibrational modes are investigated.

View Article and Find Full Text PDF

In this study, porous polysiloxane (PS)/multi-walled carbon nanotube (MWCNT) nanocomposite films were developed as high-performance triboelectric layers for flexible triboelectric nanogenerators (TENGs). TENGs convert mechanical motion into electricity and offer a promising solution for self-powered electronic systems. The nanocomposites were fabricated using a doctor blading method, and porosity was introduced a simple, scalable salt-leaching technique.

View Article and Find Full Text PDF

In this work, AlO nanopowder was synthesized using the DC reactive sputtering technique and its structural characteristics were examined. According to the FE-SEM, the average particle size ranged from 25 to 35 nm, with approximately spherical shape and uniform distribution of particles. This nanopowder was embedded into a transparent epichlorohydrin resin to fabricate nanocomposites intended for gamma-ray shielding applications.

View Article and Find Full Text PDF