Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The homologous recombination (HR) pathway is largely inactive in early embryos prior to the first cell division, making it difficult to achieve targeted gene knock-ins. The homology-mediated end joining (HMEJ)-based strategy has been shown to increase knock-in efficiency relative to HR, non-homologous end joining (NHEJ), and microhomology-mediated end joining (MMEJ) strategies in non-dividing cells.

Results: By introducing gRNA/Cas9 ribonucleoprotein complex and a HMEJ-based donor template with 1 kb homology arms flanked by the H11 safe harbor locus gRNA target site, knock-in rates of 40% of a 5.1 kb bovine sex-determining region Y (SRY)-green fluorescent protein (GFP) template were achieved in Bos taurus zygotes. Embryos that developed to the blastocyst stage were screened for GFP, and nine were transferred to recipient cows resulting in a live phenotypically normal bull calf. Genomic analyses revealed no wildtype sequence at the H11 target site, but rather a 26 bp insertion allele, and a complex 38 kb knock-in allele with seven copies of the SRY-GFP template and a single copy of the donor plasmid backbone. An additional minor 18 kb allele was detected that looks to be a derivative of the 38 kb allele resulting from the deletion of an inverted repeat of four copies of the SRY-GFP template.

Conclusion: The allelic heterogeneity in this biallelic knock-in calf appears to have resulted from a combination of homology directed repair, homology independent targeted insertion by blunt-end ligation, NHEJ, and rearrangement following editing of the gRNA target site in the donor template. This study illustrates the potential to produce targeted gene knock-in animals by direct cytoplasmic injection of bovine embryos with gRNA/Cas9, although further optimization is required to ensure a precise single-copy gene integration event.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7881600PMC
http://dx.doi.org/10.1186/s12864-021-07418-3DOI Listing

Publication Analysis

Top Keywords

target site
12
knock-in calf
8
targeted gene
8
donor template
8
grna target
8
copies sry-gfp
8
knock-in
6
one-step generation
4
targeted
4
generation targeted
4

Similar Publications

Background: Disruptive behavior and emotional problems - especially anxiety - are common in children and frequently co-occur. However, the role of co-occurring emotional problems in disruptive behavior intervention response is unclear. This study aimed to compare the effectiveness of an indicated prevention program in children with disruptive behavior problems with vs.

View Article and Find Full Text PDF

The molecular blueprint of targeted radionuclide therapy.

Nat Rev Clin Oncol

September 2025

German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany.

Targeted radionuclide therapy (TRT) is a cutting-edge treatment approach in oncology that combines the molecular precision of targeted agents with the effect of radiotherapy to selectively deliver cytotoxic radiation to cancer cells. Research efforts from the past few decades have led to a diverse molecular landscape of TRT and have provided lessons for further rational development of targeted radiopharmaceuticals and expansion of the clinical applications of this treatment modality. In this Review, we discuss TRT in the context of therapeutic approaches currently available in oncology, describe the broad range of established and emerging targets for TRT including innovative approaches to exploit vulnerabilities presented by the tumour microenvironment, and address the challenges for clinical translation and molecular optimization.

View Article and Find Full Text PDF

The kinetics of nsp7-11 polyprotein processing and impact on complexation with nsp16 among human coronaviruses.

Nat Commun

September 2025

CSSB Centre for Structural Systems Biology, Deutsches Elektronen Synchroton DESY, Leibniz Institute of Virology, University of Lübeck, Hamburg, Germany.

In coronavirus (CoV) infection, polyproteins (pp1a/pp1ab) are processed into non-structural proteins (nsps), which largely form the replication/transcription complex (RTC). The polyprotein processing and complex formation is critical and offers potential therapeutic targets. However, the interplay of polyprotein processing and RTC-assembly remains poorly understood.

View Article and Find Full Text PDF

Aptamers as target-specific recognition elements in drug delivery.

Adv Drug Deliv Rev

September 2025

Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua

Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.

View Article and Find Full Text PDF

The malignant manifestation of breast cancer is driven by complex molecular alterations that extend beyond genetic mutations to include epigenetic dysregulation. Among these, DNA methylation is a critical and reversible epigenetic modification that significantly influences breast cancer initiation, progression, and therapeutic resistance. This process, mediated by DNA methyltransferases (DNMTs), involves the addition of methyl groups to cytosine residues within CpG dinucleotides, resulting in transcriptional repression of genes.

View Article and Find Full Text PDF