Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Adipose thermogenesis is repressed in obesity, reducing the homeostatic capacity to compensate for chronic overnutrition. Inflammation inhibits adipose thermogenesis, but little is known about how this occurs. Here we showed that the innate immune transcription factor IRF3 is a strong repressor of thermogenic gene expression and oxygen consumption in adipocytes. IRF3 achieved this by driving expression of the ubiquitin-like modifier ISG15, which became covalently attached to glycolytic enzymes, thus reducing their function and decreasing lactate production. Lactate repletion was able to restore thermogenic gene expression, even when the IRF3/ISG15 axis was activated. Mice lacking ISG15 phenocopied mice lacking IRF3 in adipocytes, as both had elevated energy expenditure and were resistant to diet-induced obesity. These studies provide a deep mechanistic understanding of how the chronic inflammatory milieu of adipose tissue in obesity prevents thermogenic compensation for overnutrition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8011904PMC
http://dx.doi.org/10.1172/JCI144888DOI Listing

Publication Analysis

Top Keywords

adipose thermogenesis
12
thermogenic gene
8
gene expression
8
mice lacking
8
irf3
4
irf3 reduces
4
adipose
4
reduces adipose
4
thermogenesis isg15-mediated
4
isg15-mediated reprogramming
4

Similar Publications

Severe burns are a major global health concern, and are associated with long-term physical and psychological impairments, multi-organ dysfunction, and substantial morbidity and mortality. While burn injuries in adults trigger systemic immuno-metabolic alterations-characterized by white adipose tissue browning, elevated resting energy expenditure, widespread catabolism, and inflammation-these adaptive responses are considerably impaired in older adults, with molecular mechanisms behind these differences remaining largely unclear. As a key regulator of systemic metabolism, investigating the pathological role of adipose tissue (AT) postburn may reveal novel targets that could potentially improve patient outcomes.

View Article and Find Full Text PDF

Eurotium Cristatum fermented instant dark tea prevents obesity and promotes adipose thermogenesis via modulating the gut microbiota.

Food Res Int

November 2025

Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China. Electronic ad

In this study, we produced instant dark tea (IDT) by liquid-state fermentation of Ziyang selenium-enriched summer-autumn tea leaves utilizing Eurotium cristatum. Then, the novel mechanism of IDT against obesity was investigated. Our results for the first time revealed that IDT could alleviate obesity by regulating the gut microbiota and promoting adipose thermogenesis.

View Article and Find Full Text PDF

Mitochondrial membrane remodeling during heat acclimation in Mongolian gerbils.

Mar Life Sci Technol

August 2025

School of Life Sciences, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China.

Unlabelled: Mongolian gerbils had high ability to endure both high and cold temperatures. To study the mechanism of high ability for thermal adaptation, gerbils were acclimated to high temperature (30 °C) for 8 weeks, and were measured for metabolic features, body composition as well as mitochondrial content and activities. Lipidomic techniques were used to measure changes in mitochondrial membrane, including potential mitochondrial membrane remodeling during acute thermoregulation in gerbils.

View Article and Find Full Text PDF

In an interplay with parenchymal cells of metabolically active organs such as heart and adipose tissues, vascular endothelial cells are important for the regulation of nutrient uptake and organ-specific energy metabolism. Based on high expression of the scavenger receptor B1 (SR-B1) in capillary endothelial cells of white and brown adipose tissue (BAT), we proposed a functional role for this receptor in lipid handling and adaptive thermogenesis. To address this hypothesis, we generated mice with an endothelial-specific knockout of SR-B1 and performed metabolic turnover and indirect calorimetry studies in response to environmental cues such as cold exposure and high fat diet feeding.

View Article and Find Full Text PDF

Cyclic nucleotides are critical regulators of adaptive thermogenesis and adipogenesis, with their intracellular levels finely tuned by phosphodiesterases. Phosphodiesterase type 5 (PDE5A) modulates cyclic guanosine monophosphate (cGMP) levels in adipocytes. While PDE5A inhibition has shown promise in patients with diabetes, its role in metabolism remains unclear.

View Article and Find Full Text PDF