A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Cytoplasmic movements of the early human embryo: imaging and artificial intelligence to predict blastocyst development. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Research Question: Can artificial intelligence and advanced image analysis extract and harness novel information derived from cytoplasmic movements of the early human embryo to predict development to blastocyst?

Design: In a proof-of-principle study, 230 human preimplantation embryos were retrospectively assessed using an artificial neural network. After intracytoplasmic sperm injection, embryos underwent time-lapse monitoring for 44 h. For comparison, standard embryo assessment of each embryo by a single embryologist was carried out to predict development to blastocyst stage based on a single picture frame taken at 42 h of development. In the experimental approach, in embryos that developed to blastocyst or destined to arrest, cytoplasm movement velocity was recorded by time-lapse monitoring during the first 44 h of culture and analysed with a Particle Image Velocimetry algorithm to extract quantitative information. Three main artificial intelligence approaches, the k-Nearest Neighbour, the Long-Short Term Memory Neural Network and the hybrid ensemble classifier were used to classify the embryos.

Results: Blind operator assessment classified each embryo in terms of ability to develop to blastocyst, with 75.4% accuracy, 76.5% sensitivity, 74.3% specificity, 74.3% precision and 75.4% F1 score. Integration of results from artificial intelligence models with the blind operator classification, resulted in 82.6% accuracy, 79.4% sensitivity, 85.7% specificity, 84.4% precision and 81.8% F1 score.

Conclusions: The present study suggests the possibility of predicting human blastocyst development at early cleavage stages by detection of cytoplasm movement velocity and artificial intelligence analysis. This indicates the importance of the dynamics of the cytoplasm as a novel and valuable source of data to assess embryo viability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rbmo.2020.12.008DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
20
cytoplasmic movements
8
movements early
8
early human
8
human embryo
8
blastocyst development
8
predict development
8
neural network
8
time-lapse monitoring
8
cytoplasm movement
8

Similar Publications