A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Structure prediction, molecular simulations of RmlD from Mycobacterium tuberculosis, and interaction studies of Rhodanine derivatives for anti-tuberculosis activity. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tuberculosis is the most dangerous disease causing maximum deaths than any other, caused by single infectious agent. Due to multidrug resistant of Mycobacterium tuberculosis strains, there is a need of new drugs and drug targets. In this work, we have selected RmlD (α-dTDP-6-deoxy-lyxo-4-hexulose reductase) in the dTDP Rhamnose pathway as drug target to control tuberculosis using Rhodanine analogues. In order to study interaction of RmlD with Rhodanine analogues, a three-dimensional model based on crystal structures such as 1VLO from Clostridium, 1KBZ from Salmonella typhimurium, and 2GGS from Sulfolobus was generated using Modeller 9v7. The modeled structure reliability has been checked using programs such as Procheck, What if, Prosa, Verify 3D, and Errat. In an attempt to find new inhibitors for RmlD enzyme, docking studies were done with a series of Rhodanine and its analogues. Detailed analysis of enzyme-inhibitor interactions identified specific key residues, SER5, VAL9, ILE51, HIS54, and GLY55 which were important in forming hydrogen bonds in binding affinity. Homology modeling and docking studies on RmlD model provided valuable insight information for designing better inhibitors as novel anti-tuberculosis drugs by rational method.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-021-04696-2DOI Listing

Publication Analysis

Top Keywords

rhodanine analogues
12
mycobacterium tuberculosis
8
docking studies
8
rmld
5
structure prediction
4
prediction molecular
4
molecular simulations
4
simulations rmld
4
rmld mycobacterium
4
tuberculosis
4

Similar Publications