Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intradermal vaccination with bacillus Calmette-Guérin (BCG) protects infants from disseminated tuberculosis, and i.v. BCG protects nonhuman primates (NHP) against pulmonary and extrapulmonary tuberculosis. In humans and NHP, protection is thought to be mediated by T cells, which typically recognize bacterial peptide Ags bound to MHC proteins. However, during vertebrate evolution, T cells acquired the capacity to recognize lipid Ags bound to CD1a, CD1b, and CD1c proteins expressed on APCs. It is unknown whether BCG induces T cell immunity to mycobacterial lipids and whether CD1-restricted T cells are resident in the lung. In this study, we developed and validated () CD1b and CD1c tetramers to probe ex vivo phenotypes and functions of T cells specific for glucose monomycolate (GMM), an immunodominant mycobacterial lipid Ag. We discovered that CD1b and CD1c present GMM to T cells in both humans and NHP. We show that GMM-specific T cells are expanded in rhesus macaque blood 4 wk after i.v. BCG, which has been shown to protect NHP with near-sterilizing efficacy upon challenge. After vaccination, these T cells are detected at high frequency within bronchoalveolar fluid and express CD69 and CD103, markers associated with resident memory T cells. Thus, our data expand the repertoire of T cells known to be induced by whole cell mycobacterial vaccines, such as BCG, and show that lipid Ag-specific T cells are resident in the lungs, where they may contribute to protective immunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939042PMC
http://dx.doi.org/10.4049/jimmunol.2001065DOI Listing

Publication Analysis

Top Keywords

cd1b cd1c
12
cells
11
cells specific
8
bacillus calmette-guérin
8
bcg protects
8
humans nhp
8
ags bound
8
cells resident
8
bcg
5
mycobacterial
4

Similar Publications

Establishment of CD1b-restricted immunity to lipid antigens in the pulmonary response to infection.

Infect Immun

December 2024

Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA.

CD1 is an antigen-presenting glycoprotein homologous to MHC I; however, CD1 proteins present lipid rather than peptide antigens. CD1 proteins are well established to present lipid antigens of (Mtb) to T cells, but understanding the role of CD1-restricted immunity in response to Mtb infection has been limited by the availability of animal models naturally expressing the CD1 proteins implicated in human response: CD1a, CD1b, and CD1c. Guinea pigs, in contrast to other rodent models, express four CD1b orthologs, and here we utilize the guinea pig to establish the kinetics of gene and protein expression of CD1b orthologs, as well as the Mtb lipid-antigen and CD1b-restricted immune response at the tissue level over the course of Mtb infection.

View Article and Find Full Text PDF

New insights into the immunomodulatory potential of sialic acid on monocyte-derived dendritic cells.

Cancer Immunol Immunother

November 2024

Associate Laboratory i4HB, NOVA School of Science and Technology, Institute for Health and Bioeconomy, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.

Sialic acids at the cell surface of dendritic cells (DCs) play an important immunomodulatory role, and their manipulation enhances DC maturation, leading to heightened T cell activation. Particularly, at the molecular level, the increased stability of surface MHC-I molecules in monocyte-derived DCs (MoDCs) underpins an improved DC: T cell interaction. In this study, we focused on the impact of sialic acid remodelling by treatment with Clostridium perfringens sialidase on MoDCs' phenotypic and functional characteristics.

View Article and Find Full Text PDF

Insights into the CD1 lipidome.

Front Immunol

September 2024

Immunocore Ltd, Experimental Immunology, Abingdon, United Kingdom.

CD1 isoforms are MHC class I-like molecules that present lipid-antigens to T cells and have been associated with a variety of immune responses. The lipid repertoire bound and presented by the four CD1 isoforms may be influenced by factors such as the cellular lipidome, subcellular microenvironment, and the properties of the binding pocket. In this study, by shotgun mass spectrometry, we performed a comprehensive lipidomic analysis of soluble CD1 molecules.

View Article and Find Full Text PDF

A structural perspective of how T cell receptors recognize the CD1 family of lipid antigen-presenting molecules.

J Biol Chem

August 2024

Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK. Electronic address:

The CD1 family of antigen-presenting molecules adopt a major histocompatibility complex class I (MHC-I) fold. Whereas MHC molecules present peptides, the CD1 family has evolved to bind self- and foreign-lipids. The CD1 family of antigen-presenting molecules comprises four members-CD1a, CD1b, CD1c, and CD1d-that differ in their architecture around the lipid-binding cleft, thereby enabling diverse lipids to be accommodated.

View Article and Find Full Text PDF

Do antigen-presenting CD1a, CD1b, CD1c, and CD1d molecules bind different self-lipids?

Trends Immunol

October 2023

Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, The Netherlands; Department of Infectious Diseases and Immunology, School of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands. Electronic address:

Humans express four different lipid antigen-presenting molecules, CD1a, CD1b, CD1c, and CD1d, that are differentially expressed on antigen-presenting cells and which recycle through different endosomal compartments. Huang et al. now answer the question on whether the four CD1 isoforms selectively bind certain lipids.

View Article and Find Full Text PDF