98%
921
2 minutes
20
An alteration in the balance of excitation-inhibition has been proposed as a common characteristic of the cerebral cortex in autism, which may be due to an alteration in the number and/or function of the excitatory and/or inhibitory cells that form the cortical circuitry. We previously found a decreased number of the parvalbumin (PV)+ interneuron known as Chandelier (Ch) cell in the prefrontal cortex in autism. This decrease could result from a decreased number of Ch cells, but also from decreased PV protein expression by Ch cells. To further determine if Ch cell number is altered in autism, we quantified the number of Ch cells following a different approach and different patient cohort than in our previous studies. We quantified the number of Ch cell cartridges-rather than Ch cell somata-that expressed GAT1-rather than PV. Specifically, we quantified GAT1+ cartridges in prefrontal areas BA9, BA46, and BA47 of 11 cases with autism and 11 control cases. We found that the density of GAT1+ cartridges was decreased in autism in all areas and layers. Whether this alteration is cause or effect remains unclear but could result from alterations that take place during cortical prenatal and/or postnatal development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8107784 | PMC |
http://dx.doi.org/10.1093/cercor/bhaa402 | DOI Listing |
Biol Psychiatry
September 2025
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA; Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10027 USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA; Nash Fami
Background: As we navigate changing social landscapes, maintaining maps of interpersonal dynamics can help guide our choices. Autism spectrum disorder (ASD) is associated with social challenges that may affect the accumulation or application of social information. However, little is known about social cognitive mapping in autistic adults.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2025
Instituto de Biología Celular y Neurociencias "Prof. De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
Rationale: Autism spectrum disorders (ASD) are a group of neurodevelopmental and multifactorial conditions with cognitive manifestations. The valproic acid (VPA) rat model is a well-validated model that successfully reproduces the behavioral and neuroanatomical alterations of ASD. Previous studies found atypical brain connectivity and metabolic patterns in VPA animals: local glucose hypermetabolism in the prefrontal cortex, with no metabolic changes in the hippocampus.
View Article and Find Full Text PDFAm J Med Genet B Neuropsychiatr Genet
September 2025
The Central Lab, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China.
Autism spectrum disorder (ASD) is a neurodevelopmental condition that is increasingly linked to immune dysfunction and neuroinflammation. Regulatory T cells (Tregs), which are crucial in maintaining immune homeostasis, have been implicated in the pathogenesis of ASD. However, their role in neuroimmune interactions and behavioral outcomes remains poorly understood.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, 200011 Shanghai, China.
Preeclampsia (PE) is a serious complication of pregnancy characterized by chronic inflammation and immune dysregulation, which significantly increases the risk of neurodevelopmental disorders in offspring, including the autism spectrum disorder (ASD). This review investigated the potential mechanisms linking PE to ASD, with a particular focus on the role of microglial abnormalities. Epidemiological studies have revealed that prenatal exposure to PE raised the risk of ASD, with affected offspring showing increased odds ratios.
View Article and Find Full Text PDFPhysiol Behav
September 2025
Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
The barrel cortex is a specialized region of the primary somatosensory cortex that processes tactile information from whiskers. This study investigates how tactile stimulation (TS) affects excitatory receptive fields and surrounds suppression in barrel cortex neurons of male and female autistic-like rats, using various whisker displacement protocols. The animals were categorized into control, Valproic acid pre-treated (Val), and Val-TS treatment groups.
View Article and Find Full Text PDF