A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Host-Derived Matrix Metalloproteinase-13 Activity Promotes Multiple Myeloma-Induced Osteolysis and Reduces Overall Survival. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multiple myeloma promotes systemic skeletal bone disease that greatly contributes to patient morbidity. Resorption of type I collagen-rich bone matrix by activated osteoclasts results in the release of sequestered growth factors that can drive progression of the disease. Matrix metalloproteinase-13 (MMP13) is a collagenase expressed predominantly in the skeleton by mesenchymal stromal cells (MSC) and MSC-derived osteoblasts. Histochemical analysis of human multiple myeloma specimens also demonstrated that MMP13 largely localizes to the stromal compartment compared with CD138 myeloma cells. In this study, we further identified that multiple myeloma induces MMP13 expression in bone stromal cells. Because of its ability to degrade type I collagen, we examined whether bone stromal-derived MMP13 contributed to myeloma progression. Multiple myeloma cells were inoculated into wild-type or MMP13-null mice. In independent studies, MMP13-null mice demonstrated significantly higher overall survival rates and lower levels of bone destruction compared with wild-type controls. Unexpectedly, no differences in type I collagen processing between the groups were observed. stromal coculture assays showed reduced formation and activity in MMP13-null osteoclasts. Analysis of soluble factors from wild-type and MMP13-null MSCs revealed decreased bioavailability of various osteoclastogenic factors including CXCL7. CXCL7 was identified as a novel MMP13 substrate and regulator of osteoclastogenesis. Underscoring the importance of host MMP13 catalytic activity in multiple myeloma progression, we demonstrate the efficacy of a novel and highly selective MMP13 inhibitor that provides a translational opportunity for the treatment of this incurable disease. SIGNIFICANCE: Genetic and pharmacologic approaches show that bone stromal-derived MMP13 catalytic activity is critical for osteoclastogenesis, bone destruction, and disease progression. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2415/F1.large.jpg.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809361PMC
http://dx.doi.org/10.1158/0008-5472.CAN-20-2705DOI Listing

Publication Analysis

Top Keywords

multiple myeloma
20
matrix metalloproteinase-13
8
mmp13
8
stromal cells
8
myeloma cells
8
type collagen
8
bone stromal-derived
8
stromal-derived mmp13
8
myeloma progression
8
wild-type mmp13-null
8

Similar Publications