98%
921
2 minutes
20
Cystic fibrosis (CF) is the most frequent life-limiting autosomal recessive disorder in the Caucasian population. It is due to mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Current symptomatic CF therapies, which treat the downstream consequences of CFTR mutations, have increased survival. Better knowledge of the CFTR protein has enabled pharmacologic therapy aiming to restore mutated CFTR expression and function. These CFTR "modulators" have revolutionised the CF therapeutic landscape, with the potential to transform prognosis for a considerable number of patients. This review provides a brief summary of their mechanism of action and presents a thorough review of the results obtained from clinical trials of CFTR modulators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2021.113195 | DOI Listing |
Am J Respir Crit Care Med
September 2025
University of Washington School of Medicine, Pediatrics, Seattle, Washington, United States.
Am J Gastroenterol
September 2025
Pediatric Gastroenterology, Hepatology and Cystic Fibrosis Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico di Milano, Milan, Italy.
Ann Am Thorac Soc
September 2025
University of California Los Angeles David Geffen School of Medicine, Medicine, Los Angeles, California, United States.
Rationale: Inflammation is central to chronic obstructive pulmonary disease (COPD) pathogenesis but incompletely represented in COPD prognostic models. Neutrophil to lymphocyte ratio (NLR) is a readily available inflammatory biomarker.
Objectives: To explore the associations of NLR with smoking status, clinical features of COPD, and future adverse outcomes.
Ann Am Thorac Soc
September 2025
Erasmus MC, Rotterdam, Zuid-Holland, Netherlands.
Rationale: Modulator therapies like ivacaftor have revolutionized clinical management of cystic fibrosis (CF), showing marked short-term benefits in trials but heterogeneous findings in long-term observational studies. Since newer modulators have become the standard of care for the majority living with CF in the U.S.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
September 2025
Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
Cystic Fibrosis (CF) is a multiorgan disease caused by mutations in the gene, leading to chronic pulmonary infections and hyperinflammation. Among pathogens colonizing the CF lung, is predominant, infecting over 50% of adults with CF, and becoming antibiotic-resistant over time. Current therapies for CF, while providing tremendous benefits, fail to eliminate persistent bacterial infections, chronic inflammation, and irreversible lung damage, necessitating novel therapeutic strategies.
View Article and Find Full Text PDF