Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: There are increasing concerns about the appropriateness of generic preference-based measures to capture health benefits in the area of mental health.
Objectives: The aim of this study is to estimate preference weights for a new measure, Recovering Quality of Life (ReQoL-10), to better capture the benefits of mental healthcare.
Methods: Psychometric analyses of a larger sample of mental health service users (n = 4266) using confirmatory factor analyses and item response theory were used to derive a health state classification system and inform the selection of health states for utility assessment. A valuation survey with members of the UK public representative in terms of age, sex, and region was conducted using face-to-face interviewer administered time-trade-off with props. A series of regression models were fitted to the data and the best performing model selected for the scoring algorithm.
Results: The ReQoL-Utility Index (UI) classification system comprises 6 mental health items and 1 physical health item. Sixty-four health states were valued by 305 participants. The preferred model was a random effects model, with significant and consistent coefficients and best model fit. Estimated utilities modeled for all health states ranged from -0.195 (state worse than dead) to 1 (best possible state).
Conclusions: The development of the ReQoL-UI is based on a novel application of item response theory methods for generating the classification system and selecting health states for valuation. Conventional time-trade-off was used to elicit utility values that are modeled to enable the generation of QALYs for use in cost-utility analysis of mental health interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7871010 | PMC |
http://dx.doi.org/10.1016/j.jval.2020.10.012 | DOI Listing |