98%
921
2 minutes
20
Background: Colorectal cancer (CRC) is a prevalent malignancy of the digestive tract. miR-410-3p is involved in oncogenesis and development of CRC, but the specific regulation mechanism is still not known clearly.
Methods: The expression of miR-410-3p and zinc finger CCHC-type containing 10 (ZCCHC10) in CRC cells was detected by qRT-PCR and western blot method, respectively. The dual-luciferase reporter gene detection was applied for determination of interaction between miR-410-3p and ZCCHC10. The wound healing assay and transwell assay were carried out to measure cell migration and invasive ability, respectively.
Results: The miR-410-3p expression levels were markedly increased, but ZCCHC10 levels were reduced in CRC cells and tissues. Dual-luciferase reporter gene detection indicated that miR-410-3p targeted ZCCHC10 directly. Functionally knockdown of ZCCHC10 or overexpression of miR-410-3p activated nuclear factor-κB (NF-κB) signaling pathway, promoted epithelial-mesenchymal transition (EMT) process, as well as cell migration and invasion of CRC cells. After adding NF-κB inhibitor BAY 11-708 to inhibit NF-κB pathway, the promoting effects of si-ZCCHC10 on cell migration, invasion and EMT of HT29 and SW480 cells were suppressed. Meanwhile, overexpression of ZCCHC10 inhibited the effects of miR-410-3p on cell migration, invasion and EMT of HT29 and SW480.
Conclusion: miR-410-3p-mediated ZCCHC10 suppression regulates NF-κB activation, thereby promoting EMT process, cell migration and invasion of CRC cells. This study provides a new insight into the specific mechanism by which miR-410-3p mediates CRC progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cyto.2021.155433 | DOI Listing |
Int J Gen Med
September 2025
Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China.
Purpose: The fourth most common cause of cancer-related deaths in women is cervical cancer. Though treatment of early-stage cervical cancer is often effective, middle and advanced stage cervical cancer is hard to treat and prone to recurrence. We sought to explore the mechanism underlying cervical cancer progression to identify new therapeutic approaches.
View Article and Find Full Text PDFResearch (Wash D C)
September 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.
View Article and Find Full Text PDFOnco Targets Ther
September 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
Background: Insulinoma, the most common type of pancreatic endocrine tumor, frequently induces hypoglycemia due to persistent hyperinsulinemia. Although Mi-Lnc70 expression progressively increases during pancreatic maturation in mice, the biological role of Mi-Lnc70 in pancreatic β cells remains elusive.
Aim: This study was designed to investigate the role of LncRNA-Mi-Lnc70 in the mouse pancreatic β-cell line MIN6.
Front Cell Dev Biol
August 2025
Department of Hepatobiliary Surgery, The First Hospital of Putian City, Chengxiang, Fujian, China.
Background: USP37, a versatile deubiquitinase, plays a pivotal role in numerous cellular functions. Although its involvement in cancer development is well-established, the comprehensive pan-cancer analysis of USP37 remains relatively uncharted.
Methods: RNA sequencing data from both normal and cancerous tissues were retrieved from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases.
Newton
September 2025
Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
In confluent cell monolayers, patterns of cell forces and motion are systematically altered near topological defects in cell shape. In turn, defects have been proposed to alter cell density, extrusion, and invasion, but it remains unclear how the defects form and how they affect cell forces and motion. Here, we studied +1/2 defects, and, in contrast to prior studies, we observed the concurrent occurrence of both tail-to-head and head-to-tail defect motion in the same cell monolayer.
View Article and Find Full Text PDF