98%
921
2 minutes
20
Objective: In the event of neural injury, the homologous contralateral brain areas may play a compensatory role to avoid or limit the functional loss. However, this dynamic strategy of functional redistribution is not clearly established, especially in the pathophysiological context of diffuse low-grade glioma. Our aim here was to assess the extent to which unilateral tumor infiltration of the insula dynamically modulates the functional connectivity of the contralesional one.
Methods: Using resting-state functional connectivity MRI, a seed-to-ROI approach was employed in 52 insula-centered glioma patients (n = 30 left and 22 right) compared with 19 age-matched healthy controls.
Results: Unsurprisingly, a significant decrease of the inter-insular connectivity was observed in both patient groups. More importantly, the analyses revealed a significant increase of the contralesional insular connectivity towards both cerebral hemispheres, especially in cortical areas forming the visual and the sensorimotor networks. This functional redistribution was not identified when the analyses were performed on three control regions for which the homologous area was not impaired by the tumor. This overall pattern of results indicates that massive infiltration of the insular cortex causes a significant redeployment of the contralesional functional connectivity.
Conclusion: This general finding suggests that the undamaged insula plays a role in the functional compensation usually observed in this patient population, and thus provides compelling support for the concept of homotopic functional plasticity in brain-damaged patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840474 | PMC |
http://dx.doi.org/10.1016/j.nicl.2021.102571 | DOI Listing |
J Am Coll Health
September 2025
Hubbard School of Journalism and Mass Communication, University of Minnesota, Minneapolis, Minnesota, USA.
: An evolving THC product marketplace is diffusing through college campuses. It is essential to understand college students' THC knowledge, attitudes, practices and product packaging perceptions to identify campus health education and messaging strategies. : Participants were 30 undergraduate college students at a large-midwestern, public university.
View Article and Find Full Text PDFClin Orthop Relat Res
August 2025
Department of Pediatric Surgery, Hong Qi Hospital, Mudanjiang Medical University, Mudanjiang, PR China.
Phys Rev Lett
August 2025
Northeastern University, Department of Physics, Center for Theoretical Biological Physics, Boston, Massachusetts 02115, USA.
Sparse connectivity is a hallmark of the brain and a desired property of artificial neural networks. It promotes energy efficiency, simplifies training, and enhances the robustness of network function. Thus, a detailed understanding of how to achieve sparsity without jeopardizing network performance is beneficial for neuroscience, deep learning, and neuromorphic computing applications.
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2025
Universitat Oberta de Catalunya, Barcelona, Spain.
Background: Originally adapted from a paper-based guide for skin-related neglected tropical diseases (NTDs), version 3.0.0 of the World Health Organization (WHO) SkinNTDs app aims to strengthen disease surveillance and frontline health worker capacity in NTD-endemic settings.
View Article and Find Full Text PDFSci Adv
September 2025
Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
The locus coeruleus-norepinephrine (LC-NE) system regulates arousal and awakening; however, it remains unclear whether the LC does this in a global or circuit-specific manner. We hypothesized that sensory-evoked awakenings are predominantly regulated by specific LC-NE efferent pathways. Anatomical, physiological, and functional modularities of LC-NE pathways involving the mouse basal forebrain (BF) and pontine reticular nucleus (PRN) were tested.
View Article and Find Full Text PDF