A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

CNNAI: A Convolution Neural Network-Based Latent Fingerprint Matching Using the Combination of Nearest Neighbor Arrangement Indexing. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Automatic fingerprint identification systems (AFIS) make use of global fingerprint information like ridge flow, ridge frequency, and delta or core points for fingerprint alignment, before performing matching. In latent fingerprints, the ridges will be smudged and delta or core points may not be available. It becomes difficult to pre-align fingerprints with such partial fingerprint information. Further, global features are not robust against fingerprint deformations; rotation, scale, and fingerprint matching using global features pose more challenges. We have developed a local minutia-based convolution neural network (CNN) matching model called "Combination of Nearest Neighbor Arrangement Indexing (CNNAI)." This model makes use of a set of "n" local nearest minutiae neighbor features and generates rotation-scale invariant feature vectors. Our proposed system doesn't depend upon any fingerprint alignment information. In large fingerprint databases, it becomes very difficult to query every fingerprint against every other fingerprint in the database. To address this issue, we make use of hash indexing to reduce the number of retrievals. We have used a residual learning-based CNN model to enhance and extract the minutiae features. Matching was done on FVC2004 and NIST SD27 latent fingerprint databases against 640 and 3,758 gallery fingerprint images, respectively. We obtained a Rank-1 identification rate of 80% for FVC2004 fingerprints and 84.5% for NIST SD27 latent fingerprint databases. The experimental results show improvement in the Rank-1 identification rate compared to the state-of-art algorithms, and the results reveal that the system is robust against rotation and scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806089PMC
http://dx.doi.org/10.3389/frobt.2020.00113DOI Listing

Publication Analysis

Top Keywords

fingerprint
14
latent fingerprint
12
fingerprint databases
12
convolution neural
8
fingerprint matching
8
nearest neighbor
8
neighbor arrangement
8
arrangement indexing
8
delta core
8
core points
8

Similar Publications