A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Machine-Learning Provides Patient-Specific Prediction of Metastatic Risk Based on Innovative, Mechanobiology Assay. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cancer mortality is mostly related to metastasis. Metastasis is currently prognosed via histopathology, disease-statistics, or genetics; those are potentially inaccurate, not rapidly available and require known markers. We had developed a rapid (~ 2 h) mechanobiology-based approach to provide early prognosis of the clinical likelihood for metastasis. Specifically, invasive cell-subsets seeded on impenetrable, physiological-stiffness polyacrylamide gels forcefully indent the gels, while non-invasive/benign cells do not. The number of indenting cells and their attained depths, the mechanical invasiveness, accurately define the metastatic risk of tumors and cell-lines. Utilizing our experimental database, we compare the capacity of several machine learning models to predict the metastatic risk. Models underwent supervised training on individual experiments using classification from literature and commercial-sources for established cell-lines and clinical histopathology reports for tumor samples. We evaluated 2-class models, separating invasive/non-invasive (e.g. benign) samples, and obtained sensitivity and specificity of 0.92 and 1, respectively; this surpasses other works. We also introduce a novel approach, using 5-class models (i.e. normal, benign, cancer-metastatic-non/low/high) that provided average sensitivity and specificity of 0.69 and 0.91. Combining our rapid, mechanical invasiveness assay with machine learning classification can provide accurate and early prognosis of metastatic risk, to support choice of treatments and disease management.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-020-02720-9DOI Listing

Publication Analysis

Top Keywords

metastatic risk
16
early prognosis
8
mechanical invasiveness
8
machine learning
8
sensitivity specificity
8
machine-learning patient-specific
4
patient-specific prediction
4
metastatic
4
prediction metastatic
4
risk
4

Similar Publications