A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Toxic effects and potential mechanisms of Fluxapyroxad to zebrafish (Danio rerio) embryos. | LitMetric

Toxic effects and potential mechanisms of Fluxapyroxad to zebrafish (Danio rerio) embryos.

Sci Total Environ

National Joint Engineering Laboratory of Biopesticide Preparation, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China. Electronic address:

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fluxapyroxad is a broad-spectrum and high-efficiency succinate dehydrogenase inhibitor fungicide that can control plant fungal pathogens on many crops. However, fluxapyroxad can enter the aquatic environment when applied in the field, which has an impact on the aquatic environment. The potential threat and toxicological mechanisms of fluxapyroxad in aquatic organisms remain poorly understood. In this study, zebrafish embryos were exposed to fluxapyroxad to investigate the toxic effects and potential mechanisms of fluxapyroxad. In the acute toxicity test, the lethal sensitivity rank of the zebrafish during the three stages was larvae (0.699 mg/L) > adult fish (0.913 mg/L) > embryo (1.388 mg/L). Fluxapyroxad induced abnormal spontaneous movement, malformations and decreased heartbeat, hatching percentage, and body length of the embryos. In the sublethal toxicity test, succinate dehydrogenase activity was significantly increased in all treatment groups, while the activities of the electron transport chain complex II and ATPase were markedly inhibited in 0.347 and 0.694 mg/L fluxapyroxad groups compared to that of the control group. Exposure to fluxapyroxad resulted in significant increases in MDA production, and GPx activity was significantly reduced at 0.694 mg/L. Moreover, caspase-3 activity was significantly increased in the 0.694 mg/L group, and the expression of the genes related to growth (bmp4 and lox) was inhibited after fluxapyroxad exposure. These results indicated that oxidative stress, cell apoptosis and mitochondrial damage might be the potential mechanism underlying the toxic effects of fluxapyroxad on zebrafish embryos.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.144519DOI Listing

Publication Analysis

Top Keywords

toxic effects
12
mechanisms fluxapyroxad
12
fluxapyroxad
11
effects potential
8
potential mechanisms
8
fluxapyroxad zebrafish
8
succinate dehydrogenase
8
aquatic environment
8
zebrafish embryos
8
toxicity test
8

Similar Publications