Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
MoC and TiC MXenes were investigated as earth-abundant electrocatalyts for the CO reduction reaction (CORR). MoC and TiC exhibited faradaic efficiencies of 90% (250 mV overpotential) and 65% (650 mV overpotential), respectively, for the reduction of CO to CO in acetonitrile using an ionic liquid electrolyte. The use of ionic liquid 1-ethyl-2-methylimidazolium tetrafluoroborate as an electrolyte in organic solvent suppressed the competing hydrogen evolution reaction. Density functional theory (DFT) calculations suggested that the catalytic active sites are oxygen vacancy sites on both MXene surfaces. Also, a spontaneous dissociation of adsorbed COOH species to a water molecule and adsorbed CO on MoC promote the CORR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cc05822j | DOI Listing |