A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A natural language processing approach for identifying temporal disease onset information from mental healthcare text. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Receiving timely and appropriate treatment is crucial for better health outcomes, and research on the contribution of specific variables is essential. In the mental health domain, an important research variable is the date of psychosis symptom onset, as longer delays in treatment are associated with worse intervention outcomes. The growing adoption of electronic health records (EHRs) within mental health services provides an invaluable opportunity to study this problem at scale retrospectively. However, disease onset information is often only available in open text fields, requiring natural language processing (NLP) techniques for automated analyses. Since this variable can be documented at different points during a patient's care, NLP methods that model clinical and temporal associations are needed. We address the identification of psychosis onset by: 1) manually annotating a corpus of mental health EHRs with disease onset mentions, 2) modelling the underlying NLP problem as a paragraph classification approach, and 3) combining multiple onset paragraphs at the patient level to generate a ranked list of likely disease onset dates. For 22/31 test patients (71%) the correct onset date was found among the top-3 NLP predictions. The proposed approach was also applied at scale, allowing an onset date to be estimated for 2483 patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804184PMC
http://dx.doi.org/10.1038/s41598-020-80457-0DOI Listing

Publication Analysis

Top Keywords

disease onset
16
mental health
12
onset
9
natural language
8
language processing
8
health
5
processing approach
4
approach identifying
4
identifying temporal
4
disease
4

Similar Publications