Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sulfur mustard (SM) is recognized as one of the most lethal warfare agents. It has the potential to seriously affect public health and safety. To employ appropriate medical countermeasures and treat victims as quickly as possible, the development of a rapid and simple SM detection technique is crucial. The aim of the present study was to explore novel detection systems exhibiting excellent selectivity and high sensitivity. An SM probe, namely N-(rhodamine-B)-thiolactam-2-n-butane (SRB-NB), which was based on a thiolactam structure, was effectively designed and synthesized. The rhodamine and thiourea moieties played the roles of the chromogenic and reacting groups, respectively. Subsequently, using ionic liquids (ILs) as the solvents, a turn-on fluorescence detection system was constructed. Notably, it was found that imidazole-based ILs displayed good solubility for an SM simulant, specifically 2-chloroethyl ethyl sulfide (2-CEES). Moreover, 1-butyl-3-methylimidazolium dicyandiamide ([BMIm]DCA) IL held the maximum amount of 2-CEES (132.5 g/100 g). The SRB-NB probe exhibited better ultraviolet (UV) absorption and fluorescence properties in ILs than in other organic solvents. SRB-NB/IL was able to detect 2-CEES in liquid form with remarkable selectivity and sensitivity. The limit of detection (LOD) was established at 3.0 × 10-6 M. Importantly, SRB-NB/ILs also showed good optical response to gaseous 2-CEES and SM.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0ay02248aDOI Listing

Publication Analysis

Top Keywords

ionic liquids
8
detection
5
turn-on fluorescent
4
fluorescent probe
4
probe based
4
based -rhodamine-b-thiolactam-2--butane
4
-rhodamine-b-thiolactam-2--butane ionic
4
liquids selective
4
selective sensitive
4
sensitive detection
4

Similar Publications

Ionic liquids (ILs) have been gaining increasing focus in a variety of applications including emerging electric-propulsion concepts. A quantitative understanding of how IL ions fragment during high-energy collisions with background gases is therefore essential for interpreting mass spectra, predicting ion lifetimes in plasma and vacuum environments, and designing IL-based technologies. This work uses molecular dynamics (MD) simulations with a reactive force field to numerically model the collision-induced dissociation (CID) of isolated ions (both positive and negative) and ion clusters (2:1 and 1:2 clusters) of the prototypical ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF), colliding with a nitrogen (N) molecule, exploring all possible fragmentation channels arising from the breaking of both ionic and covalent bonds at collision energies ranging from 10 electron volts (eV) to 100 electron volts (eV) in the laboratory frame.

View Article and Find Full Text PDF

Ionic liquids (ILs) are a class of organic salts with melting points below 100°C. Owing to their unique chemical and physical properties, they are used as solvents and catalysts in various chemical transformations, progressively replacing common volatile organic solvents (VOCs) in green synthetic applications. However, their intrinsic ionic nature can restrict the use of mass spectrometric techniques to monitor the time progress of a reaction occurring in an IL medium, thus preventing one from following the formation of the reaction products or intercepting the reaction intermediates.

View Article and Find Full Text PDF

The study of electrochemical oxidations has wide-ranging implications, from the development of new electrocatalysts for fuel cells for energy conversion, to the synthesis of fine chemicals. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) has been used for decades as a sustainable, metal-free mediator for chemical oxidations and is now being used for electrochemical oxidations. We describe here a novel approach to TEMPO-mediated electrooxidations, in which the chemical input and waste generated during electrooxidations of alcohols are minimized by using a multifunctional room temperature ionic liquid (RTIL) to facilitate flow electrosynthesis.

View Article and Find Full Text PDF

The crystallization behavior of ionic liquids (ILs) 1-butyl-3-methylimidazolium [BMIM] hexafluorophosphate [PF] and chloride [Cl] is investigated upon confinement in 2.3 or 8.2 nm diameter silica nanopore arrays, along with the effects of covalently modifying the pore walls with 1-(3-trimethoxysilylpropyl)3-methylimidazolium [TMS-MIM] groups.

View Article and Find Full Text PDF

Through molecular dynamics simulations of imidazolium-based ionic liquid-water mixtures, it was found that the trace water leads to an anomalous non-monotonic change in the diffusion coefficients of ionic liquid, characterized by an initial decrease followed by an increase. Hydrogen bond analysis revealed that this unusual trend is governed by the weighted hydrogen bond lifetime, reflecting the stability of the hydrogen-bond network, rather than simply the number or energy of hydrogen bonds.

View Article and Find Full Text PDF