Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The classification and recommendation system for identifying social networking site (SNS) users' interests plays a critical role in various industries, particularly advertising. Personalized advertisements help brands stand out from the clutter of online advertisements while enhancing relevance to consumers to generate favorable responses. Although most user interest classification studies have focused on textual data, the combined analysis of images and texts on user-generated posts can more precisely predict a consumer's interests. Therefore, this research classifies SNS users' interests by utilizing both texts and images. Consumers' interests were defined using the Curlie directory, and various convolutional neural network (CNN)-based models and recurrent neural network (RNN)-based models were tested for our user interest classification system. In our hybrid neural network (NN) model, CNN-based classification models were used to classify images from users' SNS postings while RNN-based classification models were used to classify textual data. The results of our extensive experiments show that the classification of users' interests performed best when using texts and images together, at 96.55%, versus texts only, 41.38%, or images only, 93.1%. Our proposed system provides insights into personalized SNS advertising research and informs marketers on making (1) interest-based recommendations, (2) ranked-order recommendations, and (3) real-time recommendations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795211 | PMC |
http://dx.doi.org/10.3390/s21010199 | DOI Listing |