A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Determinants, and implications, of the shape and size of thylakoids and cristae. | LitMetric

Determinants, and implications, of the shape and size of thylakoids and cristae.

J Plant Physiol

Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK; University of Technology, Sydney, Climate Change Cluster, Faculty of Science, Sydney, Ultimo, NSW, 2007, Australia; School of Biological Sciences, University of Western Australia, Crawley

Published: February 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thylakoids are flattened sacs isolated from other membranes; cristae are attached to the rest of the inner mitochondrial membrane by the crista junction, but the crista lumen is separated from the intermembrane space. The shape of thylakoids and cristae involves membranes with small (5-30 nm) radii of curvature. While the mechanism of curvature is not entirely clear, it seems to be largely a function of Curt proteins in thylakoids and Mitochondrial Organising Site and Crista Organising Centre proteins and oligomeric FF ATP synthase in cristae. A subordinate, or minimal, role is attributable to lipids with areas of their head group area greater (convex leaflet) or smaller (concave leaflet) than the area of the lipid tail; examples of the latter group are monogalactosyldiglyceride in thylakoids and cardiolipin in cristae. The volume per unit area on the lumen side of the membrane is less than that of the chloroplast stroma or cyanobacterial cytosol for thylakoids, and mitochondrial matrix for cristae. A low volume per unit area of thylakoids and cristae means a small lumen width that is the average of wider spaces between lipid parts of the membranes and the narrower gaps dominated by extra-membrane components of transmembrane proteins. These structural constraints have important implications for the movement of the electron carriers plastocyanin and cytochrome c (thylakoids) and cytochrome c (cristae) and hence the separation of the membrane-associated electron donors to, and electron acceptors from, these water-soluble electron carriers. The donor/acceptor pairs, are the cytochrome fbFe complex and P in thylakoids, and Complex III and Complex IV of cristae. The other energy flux parallel to the membranes is that of the proton motive force generated by redox-powered H pumps into the lumen to the proton motive force use in ATP synthesis by H flux from the lumen through the ATP synthase. For both the electron transport and proton motive force movement, concentration differences of reduced and oxidised electron carriers and protonated and deprotonated pH buffers are involved. The need for diffusion along a congested route of these energy transfer agents may limit the separation of sources and sinks parallel to the membranes of thylakoids and cristae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2020.153342DOI Listing

Publication Analysis

Top Keywords

thylakoids cristae
16
electron carriers
12
proton motive
12
motive force
12
thylakoids
10
cristae
10
thylakoids mitochondrial
8
atp synthase
8
volume unit
8
unit area
8

Similar Publications