Combined transcriptomic and phosphoproteomic analysis of BMP4 signaling in human embryonic stem cells.

Stem Cell Res

School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, University Campus of Ioannina

Published: January 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human embryonic stem cells (hESCs) are an invaluable tool in the fields of embryology and regenerative medicine. Activin A and BMP4 are well-characterised growth factors implicated in pluripotency and differentiation. In the current study, hESCs are cultured in a modified version of mTeSR1, where low concentrations of ActivinA substitute for TGFβ. This culture system is further used to investigate the changes induced by BMP4 on hESCs by employing a combination of transcriptomic and phosphoproteomic approaches. Results indicate that in a pluripotent state, hESCs maintain WNT signaling under negative regulation by expressing pathway inhibitors. Initial stages of differentiation are characterized by upregulation of WNT pathway ligands, TGFβ pathway inhibitors which have been shown in Xenopus to expand the BMP signaling range essential for embryonic patterning, and mesendodermal transcripts. Moreover, BMP4 enhances the phosphorylation of proteins associated with migration and transcriptional regulation. Results further indicate the vital regulatory role of Activin A and BMP4 in crucial fate decisions in hESCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2020.102133DOI Listing

Publication Analysis

Top Keywords

transcriptomic phosphoproteomic
8
human embryonic
8
embryonic stem
8
stem cells
8
activin bmp4
8
pathway inhibitors
8
bmp4
5
hescs
5
combined transcriptomic
4
phosphoproteomic analysis
4

Similar Publications

Amino acid (AA) detection is fundamental for cellular function, balancing translation demands, biochemical pathways, and signaling networks. Although the GCN2 and mTORC1 pathways are known to regulate AA sensing, the global cellular response to AA deprivation remains poorly understood, particularly in non-transformed cells, which may exhibit distinct adaptive strategies compared with cancer cells. Here, we employed murine pluripotent embryonic stem (ES) cells as a model system to dissect responses to AA stress.

View Article and Find Full Text PDF

is among the most frequently mutated oncogenes in cancer, and for decades, efforts at pharmacological blockade of its function in solid cancers have been unsuccessful. A notable advance in this endeavor is the recent development of small-molecule KRAS inhibitors, which enable direct targeting of the mutant oncoprotein. Here, we comprehensively evaluated the preclinical efficacy of BI-2493, a first-in-class allele-agnostic mutant-KRAS inhibitor (panKRASi), in pancreatic ductal adenocarcinoma (PDAC).

View Article and Find Full Text PDF

Background: Pulmonary arterial hypertension (PAH), a serious disease, is characterized by various degrees of pulmonary vascular remodeling, inflammation, and increased vascular resistance, leading to fatalities in patients with severe conditions. However, the molecular mechanisms underlying the pathogenesis of PAH remain incompletely understood.

Methods: RNA sequencing (RNA-seq), 4D label-free proteomics, and phosphoproteomics were employed to detect the levels of mRNA, proteins, and phosphorylation modification in the lung tissues of PAH patients, compared to those in the control group.

View Article and Find Full Text PDF

Introduction: Statins, widely used for hypercholesterolemia, have shown anticancer properties including induction of apoptosis and ferroptosis, modulation of autophagy, and reprogramming of the tumor microenvironment, making them potential candidates for repurposing in cancer therapy. Although growing evidence suggests that statins may influence kinase signaling, current data remain inconclusive. To better understand this potential mechanism, we investigated the impact of statins on kinase activity.

View Article and Find Full Text PDF

Molecular subtyping of pediatric B-cell acute lymphoblastic leukemia (B-ALL) has improved patient outcomes through stratification and selection of targeted therapies. Despite extensive genomic and transcriptomic profiling of this cancer, few studies to date have characterized the proteomic landscape, although proteins are the direct targets of many therapeutic agents. In this study, we demonstrate the utility of multi-omic integration of global transcriptomic, proteomic, and phosphoproteomic profiles of samples from patients diagnosed with either of two B-ALL subtypes - Ph-like (-like) and .

View Article and Find Full Text PDF