A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Loss-Based Attention for Interpreting Image-Level Prediction of Convolutional Neural Networks. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although deep neural networks have achieved great success on numerous large-scale tasks, poor interpretability is still a notorious obstacle for practical applications. In this paper, we propose a novel and general attention mechanism, loss-based attention, upon which we modify deep neural networks to mine significant image patches for explaining which parts determine the image decision-making. This is inspired by the fact that some patches contain significant objects or their parts for image-level decision. Unlike previous attention mechanisms that adopt different layers and parameters to learn weights and image prediction, the proposed loss-based attention mechanism mines significant patches by utilizing the same parameters to learn patch weights and logits (class vectors), and image prediction simultaneously, so as to connect the attention mechanism with the loss function for boosting the patch precision and recall. Additionally, different from previous popular networks that utilize max-pooling or stride operations in convolutional layers without considering the spatial relationship of features, the modified deep architectures first remove them to preserve the spatial relationship of image patches and greatly reduce their dependencies, and then add two convolutional or capsule layers to extract their features. With the learned patch weights, the image-level decision of the modified deep architectures is the weighted sum on patches. Extensive experiments on large-scale benchmark databases demonstrate that the proposed architectures can obtain better or competitive performance to state-of-the-art baseline networks with better interpretability. The source codes are available on: https://github.com/xsshi2015/Loss-based-Attention-for-Interpreting-Image-level-Prediction-of-Convolutional-Neural-Networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531187PMC
http://dx.doi.org/10.1109/TIP.2020.3046875DOI Listing

Publication Analysis

Top Keywords

loss-based attention
12
neural networks
12
attention mechanism
12
deep neural
8
image patches
8
image-level decision
8
parameters learn
8
image prediction
8
patch weights
8
spatial relationship
8

Similar Publications