98%
921
2 minutes
20
Objectives: Assessment of the adaptive immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for studying long-term immunity and vaccine strategies. We quantified IFNγ-secreting T cells reactive against the main viral SARS-CoV-2 antigens using a standardised enzyme-linked immunospot assay (ELISpot).
Methods: Overlapping peptide pools built from the sequences of M, N and S viral proteins and a mix (MNS) were used as antigens. Using IFNγ T-CoV-Spot assay, we assessed T-cell and antibody responses in mild, moderate and severe SARS-CoV-2 patients and in control samples collected before the outbreak.
Results: Specific T cells were assessed in 60 consecutive patients (mild, = 26; moderate, = 10; and severe patients, = 24) during their follow-up (median time from symptom onset [interquartile range]: 36 days [28;53]). T cells against M, N and S peptide pools were detected in = 60 (100%), = 56 (93.3%), = 55 patients (91.7%), respectively. Using the MNS mix, IFNγ T-CoV-Spot assay showed a specificity of 96.7% (95% CI, 88.5-99.6%) and a specificity of 90.3% (75.2-98.0%). The frequency of reactive T cells observed with M, S and MNS mix pools correlated with severity and with levels of anti-S1 and anti-RBD serum antibodies.
Conclusion: IFNγ T-CoV-Spot assay is a reliable method to explore specific T cells in large cohorts of patients. This test may become a useful tool to assess the long-lived memory T-cell response after vaccination. Our study demonstrates that SARS-CoV-2 patients developing a severe disease achieve a higher adaptive immune response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757425 | PMC |
http://dx.doi.org/10.1002/cti2.1217 | DOI Listing |
J Med Internet Res
September 2025
Chulalongkorn University, Bangkok, Thailand.
Background: The interprofessional educational curriculum for patient and personnel safety is of critical importance, especially in the context of the COVID-19 pandemic, to prepare junior multiprofessional teams for emergency settings.
Objective: This study aimed to evaluate the effectiveness of an innovative interprofessional educational curriculum that integrated medical movies, massive open online courses (MOOCs), and 3D computer-based or virtual reality (VR) simulation-based interprofessional education (SimBIE) with team co-debriefing to enhance interprofessional collaboration and team performance using Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS). This study addressed 3 key questions.
PLoS Pathog
September 2025
Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America.
While human autopsy samples have provided insights into pulmonary immune mechanisms associated with severe viral respiratory diseases, the mechanisms that contribute to a clinically favorable resolution of viral respiratory infections remain unclear due to the lack of proper experimental systems. Using mice co-engrafted with a genetically matched human immune system and fetal lung xenograft (fLX), we mapped the immunological events defining successful resolution of SARS-CoV-2 infection in human lung tissues. Viral infection is rapidly cleared from fLX following a peak of viral replication, histopathological manifestations of lung disease and loss of AT2 program, as reported in human COVID-19 patients.
View Article and Find Full Text PDFPLOS Glob Public Health
September 2025
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
Built environment surveillance has shown promise for monitoring COVID-19 burden at granular geographic scales, but its utility for surveillance across larger areas and populations is unknown. Our study aims to evaluate the role of built environment detection of SARS-CoV-2 for the surveillance of COVID-19 across broad geographies and populations. We conducted a prospective city-wide sampling study to examine the relationship between SARS-CoV-2 on floors and COVID-19 burden.
View Article and Find Full Text PDFJ Infect Dev Ctries
August 2025
Department of Medical Microbiology, Faculty of Medicine, Ege University, Izmir 35100, Turkey.
Introduction: The aim of this study was to compare the performance of different clinical specimens-nasopharyngeal (NP) swabs collected by healthcare professionals (HCP-NP), self-collected nasal swabs (Sc-N), and saliva samples (S)-in diagnostic tests for investigating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and influenza A/B RNA.
Methodology: These clinical samples were collected from 404 symptomatic cases and tested with the SARS-CoV-2 and influenza A/B RNA tests on the cobas 6800 System of Roche Molecular Systems (Roche Molecular Systems, Pleasanton, USA). The SARS-CoV-2 or influenza virus infection status was determined for all patients based on the predefined criteria and corresponding algorithms.
J Infect Dev Ctries
August 2025
ICMR-Vector Control Research Centre, Puducherry, India.
Introduction: This study analyzed the age and sex distribution of COVID-19 patients during the initial three COVID-19 waves in Puducherry, India, from August 2020 to March 2022, to understand the distribution of infection across different demographic groups.
Methods: The disease surveillance program conducted at ICMR-Vector Control Research Centre processed 79,705 Throat Swab/Nasal Swab (TSNS) samples received from various institutions in Puducherry through the Integrated Disease Surveillance Program (IDSP). Real-time reverse-transcriptase-polymerase chain reaction (rRT-PCR) was performed following approved protocols.