98%
921
2 minutes
20
Excess reactive nitrogen (N) flows from agricultural, suburban, and urban systems to coasts, where it causes eutrophication. Coastal wetlands take up some of this N, thereby ameliorating the impacts on nearshore waters. Although the consequences of N on coastal wetlands have been extensively studied, the effect of the specific form of N is not often considered. Both oxidized N forms (nitrate, NO3-) and reduced forms (ammonium, NH4) can relieve nutrient limitation and increase primary production. However, unlike NH4, NO3- can also be used as an electron acceptor for microbial respiration. We present results demonstrating that, in salt marshes, microbes use NO3- to support organic matter decomposition and primary production is less stimulated than when enriched with reduced N. Understanding how different forms of N mediate the balance between primary production and decomposition is essential for managing coastal wetlands as N enrichment and sea level rise continue to assail our coasts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7750101 | PMC |
http://dx.doi.org/10.1093/biosci/biaa140 | DOI Listing |
Glob Chang Biol
September 2025
Elkhorn Slough National Estuarine Research Reserve, Watsonville, California, USA.
To halt and reverse the trends of ecosystem loss and degradation under global change, nations globally are promoting ecosystem restoration. Restoration is particularly crucial to coastal wetlands (including tidal marshes, mangrove forests, and tidal flats), which are among the most important ecosystems on Earth but have been severely depleted and degraded. In this review, we explore the question of how to make restoration more effective for coastal wetlands in light of the often-overlooked dynamic nature of these transitional ecosystems between land and ocean.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023
Coastal wetlands are hotspots for carbon and nitrogen cycling and serve as sinks for microplastics (MPs). Although MP effects on these biogeochemical cycles have been investigated under laboratory experiments, field-based evidence is lacking. This study presents the first field investigation of MP impacts, specifically polypropylene (PP), on sediment carbon and nitrogen cycling in intertidal and supratidal zones of a coastal wetland, employing in-situ culture over three months.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Turtle Survival Alliance, 5900 Core Road, Suite 504, North Charleston, SC 29406, USA.
The Florida softshell turtle, , is considered common and found in many different types of freshwater habitats throughout its range. However, despite its prevalence where it occurs, little is understood about the species' life history and population dynamics due to difficulties with capture and long-term marking. Building on a foundational study of the Florida softshell turtle at Wekiwa Springs State Park (WSSP) from 2007 to 2012, we present findings from an extended 16-year mark-recapture study spanning from 2007 to 2023.
View Article and Find Full Text PDFBiology (Basel)
August 2025
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
Due to human activities and the invasion of , the population of () in the Yangtze River Estuary has gradually declined. To address this issue, numerous restoration efforts have been undertaken. To investigate the changes and influencing factors of soil bacterial communities during the restoration of wetlands, we selected populations as the research focus and divided the samples into two years, S1 and S2.
View Article and Find Full Text PDFBiology (Basel)
July 2025
Basic Forestry and Proteomics Research Center, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Anthocyanins, crucial water-soluble pigments in plants, determine coloration in floral and fruit tissues, while fulfilling essential physiological roles in terms of plant growth, development, and stress adaptation. The biosynthesis of anthocyanins is transcriptionally regulated by WRKY factors, one of the largest plant-specific transcription factor families. is an East Asian species, prized for its exceptionally persistent butterfly-shaped fruits that undergo pericarp dehiscence, overturning, and a color transition to scarlet red.
View Article and Find Full Text PDF