98%
921
2 minutes
20
Transport processes that lead to exchange of mass between surface water and groundwater play a significant role for the ecological functioning of aquatic systems, for hydrological processes and for biogeochemical transformations. In this study, we present a novel integral modeling approach for flow and transport at the sediment-water interface. The model allows us to simultaneously simulate turbulent surface and subsurface flow and transport with the same conceptual approach. For this purpose, a conservative transport equation was implemented to an existing approach that uses an extended version of the Navier-Stokes equations. Based on previous flume studies which investigated the spreading of a dye tracer under neutral, losing and gaining flow conditions the new solver is validated. Tracer distributions of the experiments are in close agreement with the simulations. The simulated flow paths are significantly affected by in- and outflowing groundwater flow. The highest velocities within the sediment are found for losing condition, which leads to shorter residence times compared to neutral and gaining conditions. The largest extent of the hyporheic exchange flow is observed under neutral condition. The new solver can be used for further examinations of cases that are not suitable for the conventional coupled models, for example, if Reynolds numbers are larger than 10. Moreover, results gained with the integral solver provide high-resolution information on pressure and velocity distributions at the rippled streambed, which can be used to improve flow predictions. This includes the extent of hyporheic exchange under varying ambient groundwater flow conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gwat.13071 | DOI Listing |
Langmuir
September 2025
School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China.
Optical manipulation techniques have been widely applied in the biomedical field. However, the key issues limiting the efficiency of optical manipulation techniques are the weak driving force of optical scattering and the small working range of optical gradient forces. The optothermal Marangoni convection enables effective control of flow fields through optical means, and particle manipulation based on this mechanism offers advantages such as a wide working range, strong driving force, and high flexibility.
View Article and Find Full Text PDFCytometry B Clin Cytom
September 2025
School of Medical Sciences, Universidade Estadual de Campinas (Unicamp), Campinas, Brazil.
Acute promyelocytic leukemia (APL) is a medical emergency that needs immediate diagnosis and treatment. Podoplanin, a transmembrane glycoprotein that binds CLEC-2 on platelets, was recently demonstrated to be abnormally expressed in leukemic blasts in APL, as opposed to other forms of AML, in a study using thawed primary cells. This study aimed to explore and validate the diagnostic accuracy of measuring podoplanin expression by flow cytometry in the differential diagnosis of APL and other forms of acute myeloid leukemia (AML) as part of the diagnostic work-up of all cases suspected of AML in an academic hematology center.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110V, Valparaíso, Chile.
Reversible control of spin-dependent thermoelectricity mechanical strain provides a platform for next-generation energy harvesting and thermal logic circuits. Using first-principles and Boltzmann transport calculations, we demonstrate that monolayer NiI undergoes a strain-driven semiconductor-to-half-metal transition, enabled by the selective closure of its spin-down band gap while preserving a robust ferromagnetic ground state. Remarkably, this transition is accompanied by a giant, non-monotonic violation of the Wiedemann-Franz law, with the Lorenz number enhanced up to 7.
View Article and Find Full Text PDFChembiochem
September 2025
Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia.
Nucleic acid aptamers are artificial recognition elements with great potential in biotechnology. For their effective integration into nanodevices, rational strategies for optimizing aptamer affinity and regulating activity are essential. Artificial nucleotide analogs offer versatile tools for both fundamental and applied research in the aptamer field.
View Article and Find Full Text PDFChembiochem
September 2025
Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Mangiagalli 25, 20133, Milan, Italy.
This study investigates the synthesis of aromatic nitriles using an evolved variant of OxdF1 (L318F/F306Y), an aldoxime dehydratase from Pseudomonas putida F1, engineered for improved catalytic efficiency toward benzaldehyde oxime. The double OxdF1 (L318F/F306Y) mutant effectively catalyzes the conversion of various benzaldoxime derivatives to the corresponding nitriles. Due to the enzyme's inherent instability, immobilized whole-cell systems are employed in a flow reactor to improve its stability and broaden its applicability, with the biotransformation of benzaldehyde oxime and 2,6-difluorobenzaldehyde oxime serving as case studies.
View Article and Find Full Text PDF