Modulators of hERAP2 discovered by high-throughput screening.

Eur J Med Chem

Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; Institut Universitaire de France, F- 75231, Paris, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France. Electronic address: rebecca.deprez@u

Published: February 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Endoplasmic reticulum aminopeptidase 2, ERAP2, is an emerging pharmacological target in cancer immunotherapy and control of autoinflammatory diseases, as it is involved in antigen processing. It has been linked to the risk of development of spondyloarthritis, and it associates with the immune infiltration of tumours and strongly predicts the overall survival for patients receiving check-point inhibitor therapy. While some selective inhibitors of its homolog ERAP1 are available, no selective modulator of ERAP2 has been disclosed so far. In order to identify such compounds, we screened an in-house focused library of 1920 compounds designed to target metalloenzymes. Structure-Activity Relationships and docking around two hits led to the discovery of selective inhibitors of ERAP2. Amid those, some bind to yet untapped amino-acids in the S1 pocket. Importantly, we disclose also the first activator of small substrates hydrolysis by ERAP2. Inhibitors and activators identified in this study could serve as useful starting points for optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2020.113053DOI Listing

Publication Analysis

Top Keywords

selective inhibitors
8
modulators herap2
4
herap2 discovered
4
discovered high-throughput
4
high-throughput screening
4
screening endoplasmic
4
endoplasmic reticulum
4
reticulum aminopeptidase
4
erap2
4
aminopeptidase erap2
4

Similar Publications

Targeted degradation of Werner syndrome helicase (WRN) via ligand-directed covalent hydrophobic tagging.

Eur J Med Chem

September 2025

State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China. Electronic address:

The Werner syndrome RecQ helicase (WRN) has recently emerged as a novel synthetic lethality target for microsatellite instability-high (MSI-H) cancers. However, available WRN inhibitors or degraders is still lacking so far. Particularly, chemically designed probes capable of degrading WRN irrespective of microsatellite status remain unexplored.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a rare lung disease caused by hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in a subset of mesenchymal lung cells. Histopathologically, LAM lesions have been described as immature smooth muscle-like cells positive for the immature melanocytic marker HMB45/PMEL/gp100 and phosphorylated ribosomal protein S6 (pS6). Advances in single cell sequencing (scRNA-seq) technology allowed us to group LAM cells according to their expression of cancer stem cell (CSC) genes and identify three clusters: a high CSC-like state (SLS), an intermediate state, and a low CSC-like inflammatory state (IS).

View Article and Find Full Text PDF

Importance: The cardiovascular benefits of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) may vary by body mass index (BMI), but evidence on BMI-specific outcomes remains limited.

Objective: To investigate the associations of GLP-1 RA use with cardiovascular and kidney outcomes across BMI categories in patients with type 2 diabetes.

Design, Setting, And Participants: This retrospective cohort study used the Chang Gung Research Database, a clinical dataset covering multiple hospitals in Taiwan.

View Article and Find Full Text PDF

A new frontier in oncology: Understanding the landscape of cancer vaccines.

J Oncol Pharm Pract

September 2025

Department of Research & Development, Squad Medicine and Research (SMR), Amadalavalasa, Andhra Pradesh, India.

Cancer vaccines represent a transformative shift in oncology, aiming to prevent malignancies or treat established cancers by training the immune system to recognize tumor-specific or tumor-associated antigens. This review explores the diverse platforms and mechanisms supporting cancer vaccines, ranging from prophylactic vaccines such as HPV and hepatitis B vaccines that have significantly reduced virus-related cancers to therapeutic vaccines like Sipuleucel-T and T-VEC that extend survival in prostate cancer and melanoma. Vaccine types are classified, and delivery platforms including mRNA, peptide, dendritic cell and viral vector-based approaches are examined alongside pivotal clinical trial outcomes.

View Article and Find Full Text PDF

c-Jun N-terminal kinases (JNKs), a subfamily of mitogen-activated protein kinases (MAPKs), are key mediators of cellular responses to environmental stress, inflammation, and apoptotic signals. The three isoforms-JNK1, JNK2, and JNK3 exhibit both overlapping and isoform-specific functions. While JNK1 and JNK2 are broadly expressed across tissues and regulate immune signaling, cell proliferation, and apoptosis, JNK3 expression is largely restricted to the brain, heart, and testis, where it plays a crucial role in neuronal function and survival.

View Article and Find Full Text PDF