Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In our prior studies, obesity was associated with shorter telomeres in prostate cancer-associated stromal (CAS) cells, and shorter CAS telomeres were associated with an increased risk of prostate cancer death. To determine whether the association between obesity and shorter CAS telomeres is replicable, we conducted a pooled analysis of 790 men who were surgically treated for prostate cancer, whose tissue samples were arrayed on five tissue microarray (TMA) sets. Telomere signal was measured using a quantitative telomere-specific FISH assay and normalized to 4',6-diamidino-2-phenylindole for 351 CAS cells (mean) per man; men were assigned their median value. Weight and height at surgery, collected via questionnaire or medical record, were used to calculate body mass index (BMI; kg/m) and categorize men as normal (<25), overweight (25 ≤ BMI < 30), or obese (≥30). Analyses were stratified by grade and stage. Men were divided into tertiles of TMA- (overall) or TMA- and disease aggressiveness- (stratified) specific distributions; short CAS telomere status was defined by the bottom two tertiles. We used generalized linear mixed models to estimate the association between obesity and short CAS telomeres, adjusting for age, race, TMA set, pathologic stage, and grade. Obesity was not associated with short CAS telomeres overall, or among men with nonaggressive disease. Among men with aggressive disease (Gleason≥4+3 and stage>T2), obese men had a 3-fold increased odds of short CAS telomeres (OR: 3.06; 95% confidence interval: 1.07-8.75; = 0.045) when compared with normal weight men. Telomere shortening in prostate stromal cells may be one mechanism through which lifestyle influences lethal prostate carcinogenesis. PREVENTION RELEVANCE: This study investigates a potential mechanism underlying the association between obesity and prostate cancer death. Among men with aggressive prostate cancer, obesity was associated with shorter telomeres prostate cancer associated stromal cells, and shorter CAS telomeres have been associated with an increased risk of prostate cancer death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026488PMC
http://dx.doi.org/10.1158/1940-6207.CAPR-20-0250DOI Listing

Publication Analysis

Top Keywords

prostate cancer
28
cas telomeres
16
obesity associated
12
associated shorter
12
stromal cells
12
shorter cas
12
cancer death
12
prostate
11
prostate stromal
8
men aggressive
8

Similar Publications

Background: Prostate cancer is one of the most common malignancies in males worldwide. Serum prostate-specific antigen is a frequently employed biomarker in the diagnosis and risk stratification of prostate cancer; however, it is known for its low predictive accuracy for disease progression. New prognostic biomarkers are needed to distinguish aggressive prostate cancer from low-risk disease.

View Article and Find Full Text PDF

Aims: We aimed to analyze CD63, a cell surface protein that has been associated with tumor aggressiveness in several cancers, including breast, colorectal, and lung cancer, as well as melanoma, in prostate cancer.

Methods: CD63 expression was analyzed immunohistochemically in a cohort of primary prostate cancers from 281 patients. The results were correlated with clinico-pathologic parameters, including biochemical recurrence.

View Article and Find Full Text PDF

Objectives: To identify immunosuppressive neutrophil subsets in patients with prostate cancer (PCa) and construct a risk prediction model for prognosis and immunotherapy response of the patients based on these neutrophil subsets.

Methods: Single-cell and transcriptome data from PCa patients were collected from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Neutrophil subsets in PCa were identified through unsupervised clustering, and their biological functions and effects on immune regulation were analyzed by functional enrichment, cell interaction, and pseudo-time series analyses.

View Article and Find Full Text PDF

Lipidomic Profiling in Cancer: Phospholipid Alterations and their Role in Tumor Progression.

Curr Cancer Drug Targets

September 2025

Department of Biotechnology, Institute of Applied Sciences &Humanities, GLA University, 17km Stone, NH-19, Mathura, Delhi Road, P.O. Chaumuhan, Mathura, 281 406, U.P. India.

Phospholipids play a crucial role in various aspects of cancer biology, including tumor progression, metastasis, and cell survival. Recent studies have highlighted the signifi-cance of phospholipid metabolism and signaling in multiple cancer types, such as breast, cer-vical, prostate, bladder, colorectal, liver, lung, melanoma, mesothelioma, and oral cancer. Al-terations in phospholipid profiles, particularly in phosphatidylcholine and phosphatidylethan-olamine, have been identified as potential biomarkers for cancer diagnosis and prognosis.

View Article and Find Full Text PDF

Objectives: Bortezomib (BTZ) functions as an androgen receptor signalling inhibitor, is used for the treatment of prostate cancer, and has been sanctioned by the United States Food and Drug Administration. The medicinal applications of BTZ are impeded by low solubility, first-pass metabolism, and restricted bioavailability. This study aimed to develop and enhance polylactic acid-co-glycolic acid (PLGA) nanobubbles (NBs) as a sustained-release mechanism for BTZ, thereby augmenting stability and bioavailability.

View Article and Find Full Text PDF