98%
921
2 minutes
20
With traffic emissions of volatile organic compounds (VOCs) decreasing rapidly over the last decades, the contributions of the emissions from other source categories, such as volatile chemical products (VCPs), have become more apparent in urban air. In this work, in situ measurements of various VOCs are reported for New York City, Pittsburgh, Chicago, and Denver. The magnitude of different emission sources relative to traffic is determined by measuring the urban enhancement of individual compounds relative to the enhancement of benzene, a known tracer of fossil fuel in the United States. The enhancement ratios of several VCP compounds to benzene correlate well with population density ( ∼ 0.6-0.8). These observations are consistent with the expectation that some human activity should correlate better with the population density than transportation emissions, due to the lower per capita rate of driving in denser cities. Using these data, together with a bottom-up fuel-based inventory of vehicle emissions and volatile chemical products (FIVE-VCP) inventory, we identify tracer compounds for different VCP categories: decamethylcyclopentasiloxane (D5-siloxane) for personal care products, monoterpenes for fragrances, -dichlorobenzene for insecticides, D4-siloxane for adhesives, -chlorobenzotrifluoride (PCBTF) for solvent-based coatings, and Texanol for water-based coatings. Furthermore, several other compounds are identified (e.g., ethanol) that correlate with population density and originate from multiple VCP sources. Ethanol and fragrances are among the most abundant and reactive VOCs associated with VCP emissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.0c05467 | DOI Listing |
Nature
September 2025
Natural History Sciences, IIL, Hokkaido University, Sapporo, Japan.
Carbonaceous asteroids are the source of the most primitive meteorites and represent leftover planetesimals that formed from ice and dust in the outer Solar System and may have delivered volatiles to the terrestrial planets. Understanding the aqueous activity of asteroids is key to deciphering their thermal, chemical and orbital evolution, with implications for the origin of water on the terrestrial planets. Analyses of the objects, in particular pristine samples returned from asteroid Ryugu, have provided detailed information on fluid-rock interactions within a few million years after parent-body formation.
View Article and Find Full Text PDFDiscov Nano
September 2025
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Promoter-assisted chemical vapor deposition (CVD) has emerged as a robust strategy for the low-temperature synthesis of diverse transition metal dichalcogenides (TMDs). In these processes, promoter-induced intermediates facilitate specific reaction pathways, enabling controlled growth via vapor-solid-solid (VSS) or vapor-liquid-solid (VLS) modes. While previous studies have primarily focused on transition metal precursors, growth pathways involving engineered chalcogen-based intermediates remain underexplored due to their volatility and low melting points.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
September 2025
Key Laboratory of Tea Science of Ministry of Education and Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Hunan Agricultural University, Changsha, China.
Jasmine tea, a further processing tea made by scenting green, black, oolong, or other tea with jasmine flowers, is widely appreciated worldwide for its fragrant aroma, refreshing taste, and beneficial health effects. The production of jasmine tea is a meticulous and complex process that involves chemical reactions, physical adsorption, and flavor interaction effects at the sensory level between jasmine and tea. This paper provides a comprehensive review of the research on the processing technology, characteristic aroma formation, nonvolatile compounds, and health benefits of jasmine tea.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India.
This work presents a gas-phase experimental study on the reduction of NO (nitrogen dioxide) to HONO (nitrous acid) by two atmospherically significant volatile organic compounds (VOCs), namely, glycolaldehyde (Gla) and hydroxyacetone (HAc), under a simulated tropospheric condition. FTIR spectroscopic probing reveals that HONO is the only gaseous reduced product of NO in each reaction. The measured data indicate that the reactions in both cases occur in a 2 : 1 stoichiometry with respect to NO and Gla/HAc.
View Article and Find Full Text PDFPest Manag Sci
September 2025
Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.
Background: Stored-product insects (Sitophilus spp., Plodia interpunctella, Sitotroga cerealella) drive substantial postharvest losses and increasingly resist synthetic fumigants. Valeriana wallichii roots yield volatile oils rich in short-chain acids and sesquiterpenes.
View Article and Find Full Text PDF