Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Nanoscale engineering of carbon materials is immensely demanded in various scientific areas. We present highly ordered nitrogen-doped carbon nanowire arrays block copolymer (BCP) self-assembly under an electric field. Large dielectric constant difference between distinct polymer blocks offers rapid alignment of PMMA--PAN self-assembled nanodomains under an electric field. Lithographic patterning of the graphene electrode as well as straightforward thermal carbonization of the PAN block creates well-aligned carbon nanowire device structures. Diverse carbon nanopatterns including radial and curved arrays can be readily assembled by the modification of electrode shapes. Our carbon nanopatterns bear a nitrogen content over 26%, highly desirable for NO sensing, as the nitrogen element acts as adsorption sites for NO molecules. Aligned carbon nanowire arrays exhibits a 6-fold enhancement of NO sensitivity from a randomly aligned counterpart. Taking advantage of well-established benefits from device-oriented BCP nanopatterning, our approach proposes a viable route to highly ordered carbon nanostructures compatible to next-generation device architectures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c15491 | DOI Listing |