Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dysregulated androgen receptor (AR) plays a crucial role in prostate cancer (PCa) development, though further factors involved in its regulation remain to be identified. Recently, paradoxical results were reported on the implication of the MEN1 gene in PCa. To dissect its role in prostate luminal cells, we generated a mouse model with inducible Men1 disruption in Nkx3.1-deficient mice in which mouse prostatic intraepithelial neoplasia (mPIN) occur. Prostate glands from mutant and control mice were analyzed pathologically and molecularly; cellular and molecular analyses were carried out in PCa cell lines after MEN1 knockdown (KD) by siRNA. Double-mutant mice developed accelerated mPIN and later displayed microinvasive adenocarcinoma. Markedly, early-stage lesions exhibited a decreased expression of AR and its target genes, accompanied by reduced CK18 and E-cadherin expression, suggesting a shift from a luminal to a dedifferentiated epithelial phenotype. Intriguingly, over 60% of menin-deficient cells expressed CD44 at a later stage. Furthermore, MEN1 KD led to the increase in CD44 expression in PC3 cells re-expressing AR. Menin bound to the proximal AR promoter and regulated AR transcription via the H3K4me3 histone mark. Interestingly, the cell proliferation of AR-dependent cells (LNCaP, 22Rv1, and VCaP), but not of AR-independent cells (DU145, PC3), responded strongly to MEN1 silencing. Finally, menin expression was found reduced in some human PCa. These findings highlight the regulation of the AR promoter by menin and the crosstalk between menin and the AR pathway. Our data could be useful for better understanding the increasingly reported AR-negative/NE-negative subtype of PCa and the mechanisms underlying its development.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41388-020-01589-1DOI Listing

Publication Analysis

Top Keywords

men1 disruption
8
disruption nkx31-deficient
8
nkx31-deficient mice
8
role prostate
8
men1
6
pca
5
cells
5
mice
4
mice ar/cd44
4
ar/cd44 microinvasive
4

Similar Publications

Decoding the genetic puzzle: Mutations in key driver genes of pancreatic neuroendocrine tumors.

Biochim Biophys Acta Rev Cancer

July 2025

Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai P

Although pancreatic neuroendocrine tumors (PanNETs) are less common than other pancreatic tumors, they show significant differences in clinical behavior, genetics, and treatment responses. The understanding of the molecular pathways of PanNETs has gradually improved with advances in sequencing technology. Mutations in MEN1 (the most frequently varied gene) may result in the deletion of the tumor suppressor menin, affecting gene regulation, DNA repair, and chromatin modification.

View Article and Find Full Text PDF

Menin (MEN1) is a well-recognized powerful tumor promoter in acute leukemias (AL) with KMT2A rearrangements (KMT2Ar, also known as MLL) and mutant nucleophosmin 1 (NPM1m) acute myeloid leukemia (AML). MEN1 is essential for sustaining leukemic transformation due to its interaction with wild-type KMT2A and KMT2A fusion proteins, leading to the dysregulation of KMT2A target genes. MEN1 inhibitors (MIs), such as revumenib, ziftomenib, and other active small molecules, represent a promising new class of therapies currently under clinical development.

View Article and Find Full Text PDF

Targeting Menin in Acute Myeloid Leukemia: Therapeutic Advances and Future Directions.

Cancers (Basel)

November 2024

Department of Oncology, Karmanos Cancer Center, School of Medicine, Wayne State University, Detroit, MI 48201, USA.

Germline mutations in the gene encoding menin protein cause multiple endocrine neoplasia type 1 (MEN1) syndrome. Recent evidence suggests that inhibiting the interaction of menin with its crucial oncogenic protein partners represents a promising therapeutic strategy to AML. Menin plays a critical role in lysine methyltransferase 2A ()-gene-rearranged and -m acute leukemias, both associated with adverse outcomes with current standard therapies, especially in the relapsed/refractory setting.

View Article and Find Full Text PDF

The rarity and variability of MEN1-related primary hyperparathyroidism (mPHPT) has led to contradictory data regarding the bone phenotype in this patient population. A single-center retrospective study was conducted among young age- and sex-matched patients with mPHPT and sporadic hyperparathyroidism (sPHPT). The main parameters of calcium-phosphorus metabolism, bone remodeling markers, and bone mineral density (BMD) measurements were obtained during the active phase of hyperparathyroidism before parathyroidectomy (PTE) and 1 year after.

View Article and Find Full Text PDF

NUP98 fusion proteins and KMT2A-MENIN antagonize PRC1.1 to drive gene expression in AML.

Cell Rep

November 2024

Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA. Electronic address:

Control of stem cell-associated genes by Trithorax group (TrxG) and Polycomb group (PcG) proteins is frequently misregulated in cancer. In leukemia, oncogenic fusion proteins hijack the TrxG homolog KMT2A and disrupt PcG activity to maintain pro-leukemogenic gene expression, though the mechanisms by which oncofusion proteins antagonize PcG proteins remain unclear. Here, we define the relationship between NUP98 oncofusion proteins and the non-canonical polycomb repressive complex 1.

View Article and Find Full Text PDF