98%
921
2 minutes
20
Struvite-K (MgKPO·6HO) is a magnesium potassium phosphate mineral with naturally cementitious properties, which is finding increasing usage as an inorganic cement for niche applications including nuclear waste management and rapid road repair. Struvite-K is also of interest in sustainable phosphate recovery from wastewater and, as such, a detailed knowledge of the crystal chemistry and high-temperature behavior is required to support further laboratory investigations and industrial applications. In this study, the local chemical environments of synthetic struvite-K were investigated using high-field solid-state Mg and K MAS NMR techniques, alongside P MAS NMR and thermal analysis. A single resonance was present in each of the Mg and K MAS NMR spectra, reported here for the first time alongside the experimental and calculated isotropic chemical shifts, which were comparable to the available data for isostructural struvite (MgNHPO·6HO). An high-temperature XRD analysis of struvite-K revealed the presence of a crystalline-amorphous-crystalline transition that occurred between 30 and 350 °C, following the single dehydration step of struvite-K. Between 50 and 300 °C, struvite-K dehydration yielded a transient disordered (amorphous) phase identified here for the first time, denoted δ-MgKPO. At 350 °C, recrystallization was observed, yielding β-MgKPO, commensurate with an endothermic DTA event. A subsequent phase transition to γ-MgKPO was observed on further heating, which reversed on cooling, resulting in the α-MgKPO structure stabilized at room temperature. This behavior was dissimilar from that of struvite exposed to high temperature, where NH liberation occurs at temperatures >50 °C, indicating that struvite-K could potentially withstand high temperatures via a transition to MgKPO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c02802 | DOI Listing |
Magn Reson Lett
May 2025
State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
Supercapacitors, comprising electrical double-layer capacitors (EDLCs) and pseudocapacitors, are widely acknowledged as high-power energy storage devices. However, their local structures and fundamental mechanisms remain poorly understood, and suitable experimental techniques for investigation are also lacking. Recently, nuclear magnetic resonance (NMR) has emerged as a powerful tool for addressing these fundamental issues with high local sensitivity and non-invasiveness.
View Article and Find Full Text PDFMagn Reson Lett
November 2024
Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, UMR 7574, 75005 Paris, France.
Elastomer blends, among which natural rubber (NR) and butadiene rubber (BR), are involved in many components of the automotive/tire industry. A comprehensive understanding of their mechanical behavior requires, among other features, a detailed description of the cross-link density in these mixtures. In the case of vulcanized immiscible blends, the distribution of the cross-link density within each of the NR- and BR-rich domains is key information, but difficult to determine using the conventional approaches used for one-component cross-linked elastomers.
View Article and Find Full Text PDFAnal Chem
September 2025
Embrapa Instrumentation, Rua XV de Novembro 1452, São Carlos, São Paulo 13560-970, Brazil.
Chocolates and other cocoa products represent a multibillion-dollar industry that has faced significant price increases, largely due to a surge in cocoa plant diseases linked to climate change. One potential solution for mitigating cocoa prices involves the use of cocoa butter equivalents, substitutes, or replacers. Consequently, a rapid method for simultaneously determining multiple properties of cocoa derivatives can serve as a valuable tool for research and development of new products, quality control, and regulatory agencies to ensure compliance with cocoa product standards.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
The thermodynamic equilibrium assumption often invoked in modeling ion migration in solid-state materials remains insufficient to capture the true migration behavior of Li ions, particularly in less-crystalline superionic conductors that exhibit anomalously high Li ion conductivity. Such materials challenge classical frameworks and necessitate a lattice dynamics-based perspective that explicitly accounts for nonequilibrium phonon interactions and transient structural responses. Here, we uncover a phonon-governed Li ion migration mechanism in garnet-structured superionic conductors by comparing Ta-doped LiLaZrTaO (LLZTO4) to its undoped analogue, LiLaZrAlO (LLZO).
View Article and Find Full Text PDFNMR Biomed
October 2025
Dermatology Unit, Department of Surgical, Medical, Dental & Morphological Sciences With Interest Transplant, Oncological & Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.
Oral lichen planus (OLP) is a chronic T-cell-mediated autoimmune disease, with low potential for malignant transformation. Its etiology remains unclear, necessitating immunohistochemical and molecular-level studies to enhance diagnosis and management. Thirteen patients diagnosed with OLP and 13 healthy controls (HCs) were enrolled from three centers.
View Article and Find Full Text PDF