Downregulation of MCM2 contributes to the reduced growth potential of epithelial progenitor cells in chronic nasal inflammation.

J Allergy Clin Immunol

Department of Otolaryngology, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China. Electronic address:

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Recent studies have shown that human nasal epithelial progenitor cells (hNEPCs) are characterized by poor proliferation capacities during chronic nasal inflammation.

Objective: We sought to investigate the key molecular functions and candidates that contribute to the reduced growth potential of hNEPCs in chronically inflamed nasal mucosa.

Methods: Nasal biopsy specimens were obtained from 28 patients with nasal polyps (NPs) and 13 healthy controls. hNEPCs from nasal samples were cultured for 3 consecutive passages, and their molecular and functional profiles were analyzed by RNA sequencing. The minichromosome maintenance protein (MCM) family gene MCM2 was validated in hNEPCs and tissue samples from patients with NPs and control subjects by cell cycle, quantitative PCR, and Western blot analyses; small interfering RNA-mediated knockdown assay; and immunofluorescent staining.

Results: Compared with control hNEPCs, NP-derived hNEPCs showed (1) reduced growth kinetics, as evidenced by the colony-forming efficiency and doubling time; (2) inhibited cell cycle progression, as evidenced by gene ontology and/or pathway and cell cycle analyses; and (3) downregulated expression of MCM2, the key protein of the MCM complex, which is critical for DNA replication at the G1/S checkpoint. Moreover, hNEPCs with MCM2 knockdown showed a decreased proliferation rate, and the MCM2 protein level in basal cells was significantly lower in abnormally remodeled nasal epithelium than in normal epithelium.

Conclusion: These results demonstrate inhibited cell cycle progression and MCM2 downregulation in basal or progenitor nasal epithelial cells from NP tissue, which may contribute to the decreased growth potential of hNEPCs in chronically inflamed upper airways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2020.11.026DOI Listing

Publication Analysis

Top Keywords

cell cycle
16
reduced growth
12
growth potential
12
nasal
9
epithelial progenitor
8
progenitor cells
8
chronic nasal
8
nasal epithelial
8
hnepcs
8
potential hnepcs
8

Similar Publications

While agriculture is essential for food security, the intensive use of pesticides in modern farming practices raises concerns on their impact, in particular from a One Health perspective. In 2024, Brazil approved 663 new pesticides, a 19% increase in comparison with 2023. The occupational exposure of rural workers is known to be associated with a range of health outcomes, including cancer.

View Article and Find Full Text PDF

The E2F family of transcription factors are key regulators of the cell cycle in all metazoans. While they are primarily known for their role in cell cycle progression, E2Fs also play broader roles in cellular physiology, including the maintenance of exocrine tissue homeostasis. However, the underlying mechanisms that render exocrine cells particularly sensitive to E2F deregulation remain poorly understood.

View Article and Find Full Text PDF

Through applying the hybridization technique, new coumarin derivatives (2-17) were prepared with substitution at coumarin C-3 utilizing various heterocyclic derivatives, aiming to afford multi-target carbonic anhydrases (CAs) IX/XII and topoisomerase II (Topo II) inhibitors with potent antiproliferative activity. Eight different cell lines were used to evaluate the growth inhibition percentages (GI%) of cancer cells determined by coumarin analogues 1-17. Analogues 16 and 17 had the most substantial cytotoxic effects, achieving mean GI% of 86.

View Article and Find Full Text PDF

The Effect of Cachexia on the Feeding Regulation of Skeletal Muscle Protein Synthesis in Tumour-Bearing Mice.

J Cachexia Sarcopenia Muscle

September 2025

Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA.

Background: Cancer promotes muscle wasting through an imbalance in the tightly regulated protein synthesis and degradation processes. An array of intracellular signalling pathways, including mTORC1 and AMPK, regulate protein synthesis, and these pathways are responsive to the muscle's microenvironment and systemic stimuli. Although feeding and fasting are established systemic regulators of muscle mTORC1 and protein synthesis, the cancer environment's impact on these responses during cachexia development is poorly understood.

View Article and Find Full Text PDF

In vivo itaconate tracing reveals degradation pathway and turnover kinetics.

Nat Metab

September 2025

Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.

Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized by tricarboxylic acid (TCA) metabolism downstream of TLR signalling. Itaconate-based treatment strategies are under investigation to mitigate numerous inflammatory conditions.

View Article and Find Full Text PDF