Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Biopolymers provide versatile platforms for designing naturally-derived wound care dressings through eco-friendly pathways. Eggshell membrane (ESM), a widely available, biocompatible biopolymer based structure features a unique 3D porous interwoven fibrous protein network. The ESM was functionalized with inorganic compounds (Ag, ZnO, CuO used either separately or combined) using a straightforward deposition technique namely radio frequency magnetron sputtering. The functionalized ESMs were characterized from morphological, structural, compositional, surface chemistry, optical, cytotoxicity and antibacterial point of view. It was emphasized that functionalization with a combination of metal oxides and exposure to visible light results in a highly efficient antibacterial activity against Escherichia coli when compared to the activity of individual metal oxide components. It is assumed that this is possible due to the fact that an axial p-n junction is created by joining the two metal oxides. This structure separates into components the charge carrier pairs promoted by visible light irradiation that further can influence the generation of reactive oxygen species which ultimately are responsible for the bactericide effect. This study proves that, by employing inexpensive and environmentally friendly materials (ESM and metal oxides) and fabrication techniques (radio frequency magnetron sputtering), affordable antibacterial materials can be developed for potential applications in chronic wound healing device area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708484 | PMC |
http://dx.doi.org/10.1038/s41598-020-78005-x | DOI Listing |