Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Microwave-induced combustion (MIC) system for further Cl, Br, and I determination in granola by inductively coupled plasma mass spectrometry (ICP-MS) was proposed. A high sample mass of granola was pressed as pellets and inserted into the proposed MIC system. Water and NHOH were evaluated as absorbing solutions. The accuracy was estimated by the analysis of two certified reference materials and also by spike recoveries. Using the optimized conditions (zirconium ball milling, 1 g of granola and 6 mL of 50 mmol LNHOH), the agreement with the certified values ranged from 94 to 98% and recoveries higher than 95% were obtained. Low carbon concentration in digests (<25 mg L) was achieved, minimizing interferences by ICP-MS. Blanks were negligible and only diluted solutions were required. The concentration in samples ranged from 322 to 896, 0.618 to 0.980 and < 0.002 to 0.181 µg g for Cl, Br and I, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2020.128677 | DOI Listing |