Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Bacteria invest in a slow-growing subpopulation, called persisters, to ensure survival in the face of uncertainty. This hedging strategy is remarkably similar to financial hedging, where diversifying an investment portfolio protects against economic uncertainty. We provide a new, to our knowledge, theoretical foundation for understanding cellular hedging by unifying the study of biological population dynamics and the mathematics of financial risk management through optimal control theory. Motivated by the widely accepted role of volatility in the emergence of persistence, we consider several models of environmental volatility described by continuous-time stochastic processes. This allows us to study an emergent cellular hedging strategy that maximizes the expected per capita growth rate of the population. Analytical and simulation results probe the optimal persister strategy, revealing results that are consistent with experimental observations and suggest new opportunities for experimental investigation and design. Overall, we provide a new, to our knowledge, way of conceptualizing and modeling cellular decision making in volatile environments by explicitly unifying theory from mathematical biology and finance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820789 | PMC |
http://dx.doi.org/10.1016/j.bpj.2020.11.2260 | DOI Listing |