Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The strain Burkholderia sp. ISTR5 (R5) was studied for polyhydroxyalkanoate (PHA) production on Kraft lignin (KL) and lignosulfonate (LS) as substrates. During the initial screening, the maximum PHA mass fraction in biomass produced on KL and LS was 23% and 18%, respectively, at 96 h. PHA production on KL was further optimized using the Box-Behnken Design (BBD) model of Response Surface Methodology (RSM). After optimization, a 42.5% increase in PHA production and a 32.2% increase in the total cell biomass was observed. PHA was characterized by GC-MS, TEM, FTIR, NMR, and fluorescence microscopy. It was found to be a small chain length PHA with a copolymer of poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV). The degradation of PHBV was also studied using this strain; it was observed that R5 completely degraded PHBV in 120 h. Genomic and proteomic analysis of R5 revealed numerous enzymes for the metabolism of lignin degradation and PHA production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2020.124439 | DOI Listing |