98%
921
2 minutes
20
Genetic modification of T lymphocytes is a key issue in research and therapy. Conventional lentiviral vectors (LVs) are neither selective for T cells nor do they modify resting or minimally stimulated cells, which is crucial for applications, such as efficient in vivo modification of T lymphocytes. Here, we introduce novel CD3-targeted LVs (CD3-LVs) capable of genetically modifying human T lymphocytes without prior activation. For CD3 attachment, agonistic CD3-specific single-chain variable fragments were chosen. Activation, proliferation, and expansion mediated by CD3-LVs were less rapid compared with conventional antibody-mediated activation owing to lack of T-cell receptor costimulation. CD3-LVs delivered genes not only selectively into T cells but also under nonactivating conditions, clearly outperforming the benchmark vector vesicular stomatitis-LV glycoproteins under these conditions. Remarkably, CD3-LVs were properly active in gene delivery even when added to whole human blood in absence of any further stimuli. Upon administration of CD3-LV into NSG mice transplanted with human peripheral blood mononuclear cells, efficient and exclusive transduction of CD3+ T cells in all analyzed organs was achieved. Finally, the most promising CD3-LV successfully delivered a CD19-specific chimeric antigen receptor (CAR) into T lymphocytes in vivo in humanized NSG mice. Generation of CAR T cells was accompanied by elimination of human CD19+ cells from blood. Taken together, the data strongly support implementation of T-cell-activating properties within T-cell-targeted vector particles. These particles may be ideally suited for T-cell-specific in vivo gene delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686896 | PMC |
http://dx.doi.org/10.1182/bloodadvances.2020002229 | DOI Listing |
Biomaterials
September 2025
Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:
The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.
View Article and Find Full Text PDFMed Oncol
September 2025
Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Science, RMIT University, P.O. Box 2476, Melbourne 3001, Australia.
Lutein is a plant pigment beneficial for eye health and for preventing retinal-related diseases. However, lutein is unstable, with low oral bioavailability. In this study, lutein fromwas loaded into cubosome lipid nanocarriers, both neutral (lutein-MO) and cationic (lutein-MO-DOTAP); the release, stability, and retinal penetration of the drug were improved.
View Article and Find Full Text PDFGut Microbes
December 2025
Clinical Microbiome Unit, Laboratory of Host Immunity and Microbiome, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institute of Health, Bethesda, MD, USA.
Parity, the number of pregnancies carried beyond 20 weeks, influences the maternal gut microbiome. However, whether parity modulates the infant microbiome longitudinally remains underexplored. To address this, 746 infants in a longitudinal cohort study were assessed.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2025
Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India.
The development of biomimetic scaffolds that emulate the extracellular matrix (ECM) is critical for advancing cell-based therapies and tissue regeneration. This study reports the formulation of CHyCoGel, a novel injectable, ECM-mimetic hydrogel scaffold composed of chitosan, hyaluronic acid, chondroitin sulfate, and an amphiphilic stabilizer. CHyCoGel addresses key limitations of existing scaffolds, offering improved structural uniformity, injectability, and gelation suitable for cell encapsulation and minimally invasive delivery.
View Article and Find Full Text PDF