A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Speeding up Monte Carlo simulations for the adaptive sum of powered score test with importance sampling. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A central but challenging problem in genetic studies is to test for (usually weak) associations between a complex trait (e.g., a disease status) and sets of multiple genetic variants. Due to the lack of a uniformly most powerful test, data-adaptive tests, such as the adaptive sum of powered score (aSPU) test, are advantageous in maintaining high power against a wide range of alternatives. However, there is often no closed-form to accurately and analytically calculate the p-values of many adaptive tests like aSPU, thus Monte Carlo (MC) simulations are often used, which can be time consuming to achieve a stringent significance level (e.g., 5e-8) used in genome-wide association studies (GWAS). To estimate such a small p-value, we need a huge number of MC simulations (e.g., 1e+10). As an alternative, we propose using importance sampling to speed up such calculations. We develop some theory to motivate a proposed algorithm for the aSPU test, and show that the proposed method is computationally more efficient than the standard MC simulations. Using both simulated and real data, we demonstrate the superior performance of the new method over the standard MC simulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134502PMC
http://dx.doi.org/10.1111/biom.13407DOI Listing

Publication Analysis

Top Keywords

monte carlo
8
carlo simulations
8
adaptive sum
8
sum powered
8
powered score
8
aspu test
8
standard simulations
8
simulations
5
test
5
speeding monte
4

Similar Publications