Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Under-recognition of dengue infection may lead to increased morbidity and mortality, whereas early detection is shown to help improve patient outcomes. Recent incidence and outbreak reports of dengue virus in the United States and other temperate regions where dengue was not typically seen have raised concerns regarding appropriate diagnosis and management by healthcare providers unfamiliar with the disease. This study aimed to describe self-reported clinical symptoms of dengue fever in a non-endemic cohort and to establish a clinically useful predictive algorithm based on presenting features that can assist in the early evaluation of potential dengue infection. Volunteers who experienced febrile illness while traveling in dengue-endemic countries were recruited for this study. History of illness and blood samples were collected at enrollment. Participants were classified as dengue naive or dengue exposed based on neutralizing antibody titers. Statistical analysis was performed to compare characteristics between the two groups. A regression model including joint/muscle/bone pain, rash, dyspnea, and rhinorrhea predicts dengue infection with 78% sensitivity, 63% specificity, 80% positive predictive value, and 61% negative predictive value. A decision tree model including joint/muscle/bone pain, dyspnea, and rash yields 77% sensitivity and 67% specificity. Diagnosis of dengue fever is challenging because of the nonspecific nature of clinical presentation. A sensitive predicting model can be helpful to triage suspected dengue infection in the non-endemic setting, but specificity requires additional testing including laboratory evaluation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790069 | PMC |
http://dx.doi.org/10.4269/ajtmh.20-0192 | DOI Listing |