Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

COTI-2 is a novel anticancer thiosemicarbazone in phase I clinical trial. However, the effects of metal complexation (a main characteristic of thiosemicarbazones) and acquired resistance mechanisms are widely unknown. Therefore, in this study, the copper and iron complexes of COTI-2 were synthesized and evaluated for their anticancer activity and impact on drug resistance in comparison to metal-free thiosemicarbazones. Investigations using Triapine-resistant SW480/Tria and newly established COTI-2-resistant SW480/Coti cells revealed distinct structure-activity relationships. SW480/Coti cells were found to overexpress ABCC1, and COTI-2 being a substrate for this efflux pump. This was unexpected, as ABCC1 has strong selectivity for glutathione adducts. The recognition by ABCC1 could be explained by the reduction kinetics of a ternary Cu-COTI-2 complex with glutathione. Thus, only thiosemicarbazones forming stable, nonreducible copper(II)-glutathione adducts are recognized and, in turn, effluxed by ABCC1. This reveals a crucial connection between copper complex chemistry, glutathione interaction, and the resistance profile of clinically relevant thiosemicarbazones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706001PMC
http://dx.doi.org/10.1021/acs.jmedchem.0c01277DOI Listing

Publication Analysis

Top Keywords

copper complex
8
complex glutathione
8
glutathione adducts
8
sw480/coti cells
8
cancer cell
4
resistance
4
cell resistance
4
resistance clinically
4
clinically investigated
4
investigated thiosemicarbazone
4

Similar Publications

This article presents a multiproxy investigation of metal samples obtained from 48 Nuragic figurines (so-called bronzetti) and three copper bun ingots. These objects originate from three prominent Sardinian sanctuaries and one unidentified site, dating to the late Nuragic period of the early first millennium BCE. The dataset significantly expands the existing scientific database and unwraps the complex fabrication biographies of the figurines from ore to finished object.

View Article and Find Full Text PDF

Ultrastable Copper Cluster Enables Highly Site-Selective and Chemoselective Carbocation C(sp)-H and C(sp)-H Bonds Functionalization.

J Am Chem Soc

September 2025

State Key Laboratory of Antiviral Drugs, Tianjian Laboratory of Advanced Biomedical Sciences, Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

The C-H functionalization represents a universal and important method for constructing new C-C bonds by carrying out reactions directly on inert C-H bonds. The major challenges are to control the site-selectivity and chemoselectivity because most complex organic compounds have many similar C-H bonds or different functional groups, such as a C═C bond or O-H bond. Here, we develop a versatile copper cluster (CuNC) with high stability and dynamic catalytic sites.

View Article and Find Full Text PDF

The demand for rapid, field-deployable detection of hazardous substances has intensified the search for plasmonic sensors with both high sensitivity and fabrication simplicity. Conventional approaches to plasmonic substrates, however, often rely on lithographic precision or complex chemistries limiting scalability and reproducibility. Here, a facile, one-step synthesis of vertically aligned 2D nanosheets composed of intergrown CuO/CuO crystallites is presented, fabricated via oxygen plasma discharge on copper substrates.

View Article and Find Full Text PDF

A novel phthalonitrile derivative (a) containing three functional groups (hexyl, aminated ester, phenoxy) was synthesized and subsequently cyclotetramerized in the presence of the corresponding metal chloride salts to obtain hexadeca-substituted metal {M = Cu(II) and Co(II)} phthalocyanines (b and c). The water-soluble phthalocyanines (d and e) were prepared by treating the newly synthesized complexes (b and c) with methyl iodide. Moreover, gold nanoparticles (1) and silver nanoparticles (2) were prepared, and their surfaces were modified with quaternary phthalocyanines (d and e).

View Article and Find Full Text PDF

A single-component white-light-emitting hybrid copper(I) halide constructed using a supramolecular cation for WLEDs.

Dalton Trans

September 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

Single-component white-light-emitters ensure color stability while reducing device complexity, and are ideal candidates for white light-emitting diodes (WLEDs). However, the realization of single-component white-light emission with high efficiency and stability is still a challenge. Herein, a supramolecular cation strategy was used to synthesize the organic-inorganic hybrid copper(I) halide [(AMTA)(18C6)]CuI (1), with AMTA = 1-adamantanamine and 18C6 = 18-crown-6.

View Article and Find Full Text PDF