Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In cases of brain disease such as temporal lobe epilepsy (TLE), damage may lead to functional reorganization and a shift in language dominance to homolog regions in the other hemisphere. If the effects of TLE on language dominance are hemisphere-focused, then brain regions and connections involved in word reading should be less left-lateralized in left temporal lobe epilepsy (lTLE) than right temporal lobe epilepsy (rTLE) or healthy controls, and the opposite effect should be observed in patients with rTLE. In our study, functional magnetic resonance imaging (fMRI) showed that patients with rTLE had more strongly lateralized left hemisphere (LH) activation than patients with lTLE and healthy controls in language-related brain regions (pars opercularis and fusiform gyrus (FuG)). Corresponding with this difference, diffusion tensor imaging (DTI) found differences in connectivity indicative of patients with lTLE having greater tract integrity than patients with rTLE in the right hemisphere (RH) uncinate fasciculus (UF), inferior longitudinal fasciculus (ILF), and inferior fronto-occipital fasciculus (IFOF) using the network-based statistic analysis method. The UF, ILF, and IFOF tract integrity have previously been associated with lexical (whole-word) processing abilities. Multivariate distance matrix regression provided converging evidence for regions of the IFOF having different connectivity patterns between groups with lTLE and rTLE. This research demonstrates language lateralization differences between patient groups with lTLE and rTLE, and corresponding differences in the connectivity strength of the ILF, IFOF, and UF. This research provides a novel approach to measuring lateralization of language in general, and the fMRI and DTI findings were integral for guiding the neurosurgeons performing the TLE resections. This approach should inform future studies of language lateralization and language reorganization in patients such as those with TLE.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yebeh.2020.107467DOI Listing

Publication Analysis

Top Keywords

temporal lobe
16
lobe epilepsy
16
language lateralization
12
patients rtle
12
lateralization differences
8
left temporal
8
word reading
8
language dominance
8
brain regions
8
healthy controls
8

Similar Publications

Individual alpha frequency tACS modifies the detection of space-time optical illusion.

Exp Brain Res

September 2025

Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy.

Postdiction is a perceptual phenomenon where the perception of an earlier stimulus is influenced by a later one. This effect is commonly studied using the 'rabbit illusion', in which temporally regular, but spatially irregular, stimuli are perceived as equidistant. While previous research has focused on short inter-stimulus intervals (100-200 ms), the role of longer intervals, which may engage late attentional processes, remains unexplored.

View Article and Find Full Text PDF

Positron Emission Tomography (PET) is a critical imaging modality in nuclear medicine but requires radioactive tracer administration, which increases radiation exposure risks. While recent studies have investigated MR-guided low-dose PET denoising, they neglect two critical factors: the synergistic roles of multicontrast MR images and disease-specific denoising requirements. In this work, we propose a diffusion model that integrates T1-weighted, T2 fluid attenuated inversion recovery (T2 FLAIR), and hippocampal-optimized (T2 HIPPO) MR sequences to achieve ultra-low-dose PET denoising tailored for temporal lobe epilepsy (TLE).

View Article and Find Full Text PDF

Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.

View Article and Find Full Text PDF

Background: Frontotemporal dementia (FTD) encompasses diverse clinical phenotypes, primarily characterized by behavioral and/or language dysfunction. A newly characterized variant, semantic behavioral variant FTD (sbvFTD), exhibits predominant right temporal atrophy with features bridging behavioral variant FTD (bvFTD) and semantic variant primary progressive aphasia (svPPA). This study investigates the longitudinal structural MRI correlates of these FTD variants, focusing on cortical and subcortical structural damage to aid differential diagnosis and prognosis.

View Article and Find Full Text PDF