Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The development of an oral formulation that ensures increased bioavailability of drugs is a great challenge for pharmaceutical scientists. Among many oral formulation systems, a drug delivery system employing superporous networks was developed to provide a prolonged gastro-retention time as well as improved bioavailability of drugs with a narrow absorption window in the gastrointestinal tract. Superporous networks (SPNs) were prepared from chitosan by crosslinking with glyoxal and poly(vinyl alcohol) (PVA). The SPNs showed less porosity and decreased water uptake with an increase in the crosslinking density and content of PVA. Gastro-retentive tablets (GRTs) were formulated using hydroxypropyl methylcellulose (HPMC, a hydrophilic polymer) and the prepared SPNs. Ascorbic acid (AA), which is mainly absorbed in the proximal part of the small intestine, was selected as a model drug. The formulated GRTs exhibited no floating lag time and stayed afloat until the end of the dissolution test. The in vitro drug release from the GRTs decreased with a decrease in the water uptake of the SPNs. The profile of drug release from the GRTs corresponded to the first-order and Higuchi drug-release models. Overall, floating tablets composed of the SPNs and HPMC have potential as a favorable platform to ensure sustained release and improved bioavailability of drugs that are absorbed in the proximal part of the small intestine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-020-01851-5 | DOI Listing |