98%
921
2 minutes
20
Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique for measuring rapid changes in the extracellular concentration of neurotransmitters within the brain. Due to its fast scan rate and large output-data size, the current analysis of the FSCV data is often conducted on a computer external to the FSCV device. Moreover, the analysis is semi-automated and requires a good understanding of the characteristics of the underlying chemistry to interpret, making it unsuitable for real-time implementation on low-resource FSCV devices. This paper presents a hardware-software co-design approach for the analysis of FSCV data. Firstly, a deep neural network (DNN) is developed to predict the concentration of a dopamine solution and identify the data recording electrode. Secondly, the DNN is pruned to decrease its computation complexity, and a custom overlay is developed to implement the pruned DNN on a low-resource FPGA-based platform. The pruned DNN attains a recognition accuracy of 97.2% with a compression ratio of 3.18. When the DNN overlay is implemented on a PYNQ-Z2 platform, it achieves the execution time of 13 ms and power consumption of 1.479 W on the entire PYNQ-Z2 board. This study demonstrates the possibility of operating the DNN for FSCV data analysis on portable FPGA-based platforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2020.3037366 | DOI Listing |
Front Bioeng Biotechnol
August 2025
Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea.
Fast Scan Cyclic Voltammetry (FSCV) is a widely used electrochemical technique to detect rapid extracellular dopamine transients . It employs carbon fiber microelectrodes (CFMEs), but conventional 7 µm diameter CFMEs often suffer from limited mechanical durability and reduced lifespan, hindering their use in chronic monitoring. To improve mechanical robustness and long-term functionality, we fabricated 30 µm diameter CFMEs and modified their geometry via electrochemical etching to form cone-shaped tips.
View Article and Find Full Text PDFACS Sens
May 2025
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States.
Fast-scan cyclic voltammetry (FSCV) is a powerful technique for monitoring rapid neurochemical fluctuations in living animals. When paired with permanently implanted carbon-fiber microelectrodes, changes in neurochemical dynamics can be monitored over months and related to changes in behavior. However, the performance and electrical properties of handmade microelectrodes are variable and impacted by the biological response to implantation and the physical and chemical diversity of recording environments.
View Article and Find Full Text PDFDrug Alcohol Depend
March 2025
Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA. Electronic address:
Adolescence is a developmental period marked by significant alterations to brain neurobiology and behavior. Adolescent nicotine use disrupts developmental trajectories and increases vulnerability to maladaptive drug-taking in adulthood. The mesolimbic dopamine (DA) system, including the nucleus accumbens core (NAc), mediates the reinforcing effects of nicotine.
View Article and Find Full Text PDFIntegr Med Res
September 2024
Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea.
Background: Herbal medicine Ja-Geum-Jeong (JGJ) has been used for the treatment of detoxification in Eastern Asia. However, the mechanisms involved are not clearly defined. The purpose of the present study was to investigate if herb medication inhibits Methamphetamine (METH)'s reinforcing effect and also examined if a combination of herb medication and acupuncture produces a synergistic effect on METH.
View Article and Find Full Text PDFEur J Neurosci
September 2024
Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
For over four decades, fast-scan cyclic voltammetry (FSCV) has been used to selectively measure neurotransmitters such as dopamine (DA) with high spatial and temporal resolution, providing detailed information about the regulation of DA in the extracellular space. FSCV is an optimal method for determining concentrations of stimulus-evoked DA in brain tissue. When modelling diseases involving disturbances in DA transmission, preclinical rodent models are especially useful because of the availability of specialized tools and techniques that serve as a foundation for translational research.
View Article and Find Full Text PDF